
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1.
Hàm tuần hoàn với chu kì \(2\pi\) nên ta chỉ cần xét trên đoạn \(\left[0;2\pi\right]\)
\(y'=\frac{-4}{\left(cosx-2\right)^2}.sinx=0\Leftrightarrow x=k\pi\)
\(\Rightarrow x=\left\{0;\pi;2\pi\right\}\)
\(y\left(0\right)=-3\) ; \(y\left(\pi\right)=\frac{1}{3}\) ; \(y\left(2\pi\right)=-3\)
\(\Rightarrow\left\{{}\begin{matrix}M=\frac{1}{3}\\m=-3\end{matrix}\right.\)
\(\Rightarrow9M+m=0\)
2.
\(\Leftrightarrow y.cosx+y.sinx+2y=2k.cosx+k+1\)
\(\Leftrightarrow y.sinx+\left(y-2k\right)cosx=k+1-2y\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(\Rightarrow y^2+\left(y-2k\right)^2\ge\left(k+1-2y\right)^2\)
\(\Leftrightarrow2y^2-4k.y+4k^2\ge4y^2-4\left(k+1\right)y+\left(k+1\right)^2\)
\(\Leftrightarrow2y^2-4y-3k^2+2k+1\le0\)
\(\Leftrightarrow2\left(y-1\right)^2\le3k^2-2k+1\)
\(\Leftrightarrow y\le\sqrt{\frac{3k^2-2k+1}{2}}+1\)
\(y_{max}=f\left(k\right)=\frac{1}{\sqrt{2}}\sqrt{3k^2-2k+1}+1\)
\(f\left(k\right)=\frac{1}{\sqrt{2}}\sqrt{3\left(k-\frac{1}{3}\right)^2+\frac{2}{3}}+1\ge\frac{1}{\sqrt{3}}+1\)
Dấu "=" xảy ra khi và chỉ khi \(k=\frac{1}{3}\)
Đáp án A

1.
ĐKXĐ: ...
\(3cotx=-\sqrt{3}\Leftrightarrow cotx=-\frac{1}{\sqrt{3}}\)
\(\Rightarrow x=-\frac{\pi}{3}+k\pi\)
2.
\(\Leftrightarrow2x+\frac{\pi}{6}=\frac{\pi}{3}+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{2}\)
3.
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=\frac{2\pi}{3}+k2\pi\\x+\frac{\pi}{6}=-\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=-\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
4.
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{2}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

Hàm số xác định trên R khi và chỉ khi:
\(2cos^2x-m.sinx+1>0\) ;\(\forall x\)
\(\Leftrightarrow2-2sin^2x-m.sinx+1>0\) ;\(\forall x\)
\(\Leftrightarrow-2sin^2x-m.sinx+3>0\)
Đặt \(sinx=t\Rightarrow f\left(t\right)=-2t^2-m.t+3>0\) ; \(\forall t\in\left[-1;1\right]\)
\(\Leftrightarrow\min\limits_{\left[-1;1\right]}f\left(t\right)>0\)
Do \(a=-2< 0\Rightarrow f\left(t\right)_{min}\) luôn rơi vào 1 trong 2 đầu mút của đoạn
\(f\left(-1\right)=m+1\) ; \(f\left(1\right)=1-m\)
TH1: \(f\left(t\right)_{min}=m+1\Rightarrow\left\{{}\begin{matrix}m+1>0\\1-m\ge m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m\le0\end{matrix}\right.\) \(\Leftrightarrow-1< m\le0\)
TH2: \(f\left(t\right)_{min}=1-m\Rightarrow\left\{{}\begin{matrix}1-m>0\\m+1\ge1-m\end{matrix}\right.\) \(\Rightarrow0\le m< 1\)
Vậy \(-1< m< 1\)
Có duy nhất 1 giá trị nguyên của m thỏa mãn (m=0)