Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng định lí viet: \(x_1+x_2=-\frac{b}{a},x_1.x_2=\frac{c}{a}\)
\(ax^2+bx+c=a\left(x^2+\frac{b}{a}x+\frac{c}{a}\right)=a\left(x^2-\left(x_1+x_2\right)x+x_1.x_2\right)=a\left[\left(x^2-x_1.x\right)-\left(x_2x-x_1x_2\right)\right]\)
=\(a\left[x\left(x-x_1\right)-x_2\left(x-x_1\right)\right]=a\left(x-x_1\right)\left(x-x_2\right)\)

Nhận xét rằng với mọi số nguyên \(x\), định lý Fermat nhỏ cho ta: \(x^{2017}\equiv x\) (mod \(2017\))
nên với mỗi nghiệm \(x_i\) ta có: \(x_i^{2017}+ax_i^2+bx_i+c\equiv ax_i^2+\left(b+1\right)x_i+c\) (mod \(2017\))
\(\Rightarrow ax_i^2+\left(b+1\right)x_i+c\equiv0\) (mod \(2017\))
Xét \(x_1\) có: \(ax_1^2+\left(b+1\right)x_1+c\equiv0\) (mod \(2017\)) (1)
Xét \(x_2\) có: \(ax_2^2+\left(b+1\right)x_2+c\equiv0\) (mod \(2017\)) (2)
Từ (1), (2) \(\Rightarrow a\left(x_1^2-x_2^2\right)+\left(b+1\right)\left(x_1-x_2\right)⋮2017\)
\(\Rightarrow a\left(x_1-x_2\right)\left(x_1+x_2\right)+\left(b+1\right)\left(x_1-x_2\right)⋮2017\)
\(\Rightarrow\left(x_1-x_2\right)\left[a\left(x_1+x_2\right)+\left(b+1\right)\right]⋮2017\)
Mà \(\left(x_1-x_2\right)\left(x_2-x_3\right)\left(x_3-x_1\right)⋮̸2017\), \(\Rightarrow\left\{{}\begin{matrix}x_1-x_2⋮̸2017\\x_2-x_3⋮̸2017\\x_1-x_3⋮̸2017\end{matrix}\right.\)
\(\Rightarrow a\left(x_1+x_2\right)+\left(b+1\right)⋮2017\) (3) (do \(2017\) là số nguyên tố)
Tương tự với \(x_1\) và \(x_3\): \(\Rightarrow a\left(x_1+x_3\right)+\left(b+1\right)⋮2017\) (4)
Từ (3), (4) \(\Rightarrow a\left(x_2-x_3\right)⋮2017\)
Mà \(x_2-x_3⋮̸2017\Rightarrow a⋮2017\) (do \(2017\) là số nguyên tố) (5)
Từ (3), (5) \(\Rightarrow b+1⋮2017\) (6)
Từ (1), (5), (6) \(\Rightarrow c⋮2017\) (7)
Từ (5), (6), (7) \(\Rightarrow a+b+c+1⋮2017\) (đpcm)
\(x_{1} + x_{2} = - \frac{b}{a} , x_{1} x_{2} = \frac{c}{a} .\)
Điều kiện:
\(0 \leq x_{1} , x_{2} \leq 1.\)
Ta rút gọn:
\(P = \frac{\left(\right. a - b \left.\right) \left(\right. 2 a - c \left.\right)}{a \left(\right. a - b + c \left.\right)} .\)
Thay \(b = - a \left(\right. x_{1} + x_{2} \left.\right) , \textrm{ } c = a x_{1} x_{2}\):
\(P = \frac{\left(\right. a + a \left(\right. x_{1} + x_{2} \left.\right) \left.\right) \left(\right. 2 a - a x_{1} x_{2} \left.\right)}{a \left(\right. a + a \left(\right. x_{1} + x_{2} \left.\right) + a x_{1} x_{2} \left.\right)} .\)
Rút gọn \(a\):
\(P = \frac{\left(\right. 1 + x_{1} + x_{2} \left.\right) \left(\right. 2 - x_{1} x_{2} \left.\right)}{2 + x_{1} + x_{2} + x_{1} x_{2}} .\)
\(P \left(\right. x_{1} , x_{2} \left.\right) = \frac{\left(\right. 1 + x_{1} + x_{2} \left.\right) \left(\right. 2 - x_{1} x_{2} \left.\right)}{2 + x_{1} + x_{2} + x_{1} x_{2}} , 0 \leq x_{1} , x_{2} \leq 1.\)
\(P = \frac{\left(\right. 1 + x_{2} \left.\right) \left(\right. 2 - 0 \left.\right)}{2 + x_{2} + 0} = \frac{2 \left(\right. 1 + x_{2} \left.\right)}{2 + x_{2}} .\)
Với \(x_{2} \in \left[\right. 0 , 1 \left]\right.\):
⇒ Trên cạnh này: \(1 \leq P \leq \frac{4}{3}\).
\(P = \frac{\left(\right. 2 + x_{2} \left.\right) \left(\right. 2 - x_{2} \left.\right)}{3 + x_{2}} .\)
Với \(x_{2} \in \left[\right. 0 , 1 \left]\right.\):
⇒ Trên cạnh này: \(\frac{3}{4} \leq P \leq \frac{4}{3} .\)
Giá trị nhỏ nhất của \(P\) là:
\(\boxed{\frac{3}{4}}\)