Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) thêm một phương trình bậc nhất hai ẩn để được hai ẩn để được một hệ có nghiệm duy nhất đó là : \(2x-3y=7\)
b) thêm một phương trình bậc nhất hai ẩn để được một hệ vô nghiệm là : \(6x-4y=11\)
c) thêm một phương trình bậc nhất hai ẩn để được một hệ có vô số nghiệm là : \(9x-6y=15\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: 3x – 2y = 5 ⇔
Để được một hệ có vô số nghiệm thì cần thêm một phương trình bậc nhất hai ẩn có hệ số góc bằng 3/2 và tung độ gốc bằng - 5/2 .
Chẳng hạn: ⇔ 6x – 4y = 10
Khi đó ta có hệ có vô số nghiệm.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: 3x – 2y = 5 ⇔
Để được một hệ vô nghiệm thì cần thêm một phương trình bậc nhất hai ẩn có hệ số góc bằng 3/2 và tung độ gốc khác - 5/2 .
Chẳng hạn: ⇔ 3x – 2y = 3
Khi đó ta có hệ vô nghiệm.
Cho phương trình 3x-2y=5
Hãy cho thêm 1 phương trình bậc nhất 2 ẩn để được 1 hệ có nghiệm duy nhất
(9)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Để hệ pt có nghiệm duy nhất khi \(3\ne\frac{2}{m}\Leftrightarrow3m\ne2\Leftrightarrow m\ne\frac{2}{3}\)
Với \(m\ne\frac{2}{3}\)hệ pt có nghiệm suy nhất
\(\hept{\begin{cases}3x+2y=m\\x+my=3\end{cases}\Leftrightarrow\hept{\begin{cases}3x+2y=m\\3x+3my=9\end{cases}\Leftrightarrow\hept{\begin{cases}\left(2-3m\right)y=m-9\\x+my=3\end{cases}}}}\)
\(\left(1\right)\Rightarrow y=\frac{m-9}{2-3m}\)
\(\left(2\right)\Rightarrow x=3-my=3-\frac{m^2-9m}{2-3m}=\frac{6-9m-m^2+9m}{2-3m}=\frac{6-m^2}{2-3m}\)
Thay vào biểu thức trên ta được :
\(\frac{18-3m^2}{2-3m}+\frac{4m-36}{2-3m}=-5\Rightarrow-18-3m^2+4m=-10+15m\)
\(\Leftrightarrow-3m^2-11m-8=0\Leftrightarrow\left(3m+8\right)\left(m+1\right)=0\Leftrightarrow m=-\frac{8}{3};m=-1\)( tmđk )
check lại hộ mình nhé =)
Ta có: 3x – 2y = 5 ⇔![Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9](http://cdn.hoc24.vn/bk/hTj3zkcKbE9b.png)
Để được một hệ có nghiệm duy nhất thì cần thêm một phương trình bậc nhất hai ẩn có hệ số góc khác 3/2 .
Chẳng hạn:
⇔ -x + 2y = 4
Khi đó ta có hệ
có một nghiệm duy nhất.