Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Bạn tự giải
b.
Phương trình hoành độ giao điểm (d) và (P):
\(\dfrac{1}{2}x^2=x-m\Leftrightarrow x^2-2x+2m=0\) (1)
(d) cắt (P) tại 2 điểm pb khi và chỉ khi (1) có 2 nghiệm pb
\(\Leftrightarrow\Delta'=1-2m>0\Leftrightarrow m< \dfrac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A\in\left(d\right)\Rightarrow9=-3m+1-m^2\)
\(\Leftrightarrow m^2+3m+8=0\) \(\Leftrightarrow\left(m+\dfrac{3}{2}\right)^2+\dfrac{23}{4}=0\)(vn)
Vậy không tồn tại m để (d) đi qua A(-1;9)
b) Xét pt hoành độ gđ của (P) và (d) có:
\(2x^2=3mx+1-m^2\)
\(\Leftrightarrow2x^2-3mx-1+m^2=0\)
\(\Delta=9m^2-4.2\left(-1+m^2\right)=m^2+8>0\) với mọi m
=> Pt luôn có hai nghiệm pb => (d) luôn cắt (P) tại hai điểm pb
Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3m}{2}\\x_1x_2=\dfrac{m^2-1}{2}\end{matrix}\right.\)
\(x_1+x_2=2x_1x_2\)
\(\Leftrightarrow\dfrac{3m}{2}=2.\dfrac{m^2-1}{2}\) \(\Leftrightarrow2m^2-3m-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy...
a) (d) đi qua điểm \(\left(1;8\right)\Rightarrow8=2m+2-4m=2-2m\Rightarrow m=-3\)
b) pt hoành độ giao điểm: \(x^2-2\left(m+1\right)x+4m=0\)
\(\Delta'=\left(m+1\right)^2-4m=m^2-2m+1=\left(m-1\right)^2\)
Để (P) cắt (d) tại 2 điểm phân biệt \(\Rightarrow\Delta'>0\Rightarrow m\ne1\)