Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi A,B lần lượt là giao của (d) với trục Ox, Oy
=>A(-2m/m-1;0); B(0;2m)
=>OA=|2m|/|m-1|; OB=|2m|
Theo đề, ta có: 1/2*OA*OB=1
=>4m^2/|m-1|=2
TH1: m>1
Ptsẽ là 4m^2=2m-2
=>4m^2-2m+2=0(loại)
TH2: m<1
Pt sẽ là 4m^2=-2m+2
=>4m^2+2m-2=0
=>2m^2+m-1=0
=>2m^2+2m-m-1=0
=>(m+1)(2m-1)=0
=>m=-1 hoặc m=1/2

a: (d): 2kx+(k-1)y=2
=>(k-1)y=2-2kx
\(\Leftrightarrow y=x\cdot\dfrac{-2k}{k-1}+\dfrac{2}{k-1}\)
Để hai đường song song thì \(-\dfrac{2k}{k-1}=\sqrt{3}\)
=>\(2k=-\sqrt{3}k+\sqrt{3}\)
=>\(k\left(2+\sqrt{3}\right)=\sqrt{3}\)
=>\(k=\sqrt{3}\left(2-\sqrt{3}\right)\)
b: \(d\left(O;d\right)=\dfrac{\left|0\cdot2k+0\cdot\left(k-1\right)-2\right|}{\sqrt{\left(2k\right)^2+\left(k-1\right)^2}}=\dfrac{2}{\sqrt{\left(4k^2+k^2-2k+1\right)}}\)
Để d lớn nhất thì \(\sqrt{5k^2-2k+1}_{MIN}\)
\(\Leftrightarrow A=5k^2-2k+1_{MIN}\)
A=5(k^2-2/5k+1/5)
=5(k^2-2/5k+1/25+4/25)
=5(k-1/5)^2+4/5>=4/5
Dấu = xảy ra khi k=1/5

Sửa đề: BC=10cm
a: AC=8cm
Xét ΔABC vuông tại A có sin B=AC/BC=4/5
nên góc B=53 độ
=>góc C=37 độ
b: \(AH=\dfrac{6\cdot8}{10}=4.8\left(cm\right)\)
\(BH=\dfrac{6^2}{10}=3.6\left(cm\right)\)
CH=BC-BH=6,4cm
c: AM=BC/2=5cm
\(HM=\sqrt{5^2-4.8^2}=1.4\left(cm\right)\)
\(S=\dfrac{1.4\cdot4.8}{2}=3.36\left(cm^2\right)\)
giúp luôn câu b đi
@Nguyễn Việt Lâm