Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì p nguyên tố > 3 nên p ko chia hết cho 2 ; 3
=> p ko thể có dạng 6k ( chia hết cho 2 ) ; 6k+2 ( chia hết cho 2 ) ; 6k+3 ( chia hết cho 3 ) ; 6k+4 ( chia hết cho 2 )
=> p có dạng 6k+1 hoặc 6k+5
k mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
p là số nguyên tố lớn hơn 3 => p=3k+1 hoặc p=3k+2
Nếu p=3k+1 => 2p+1=2(3k+1)+1=6k+2+1=6k+3 là hợp số (loại)
=>p=3k+2
=>4p+1=4(3k+2)+1=12k+8+1=12k+9 là hợp số (đpcm)
Vì p là số nguyên tố lớn hơn 3 nên p sẽ có 2 dạng đó là: 3k + 1 và 3k + 2.
Ta chia làm 2 trường hợp:
- TH1: p = 3k + 1
=> 2p + 1 = 2.(3k + 1) + 1 = 6k + 2 + 1 = 6k + 3 = 3.(2k + 1) là hợp số.
=> TH này bị loại vì theo đề bài 2p + 1 phải là số nguyên tố.
- TH2: p = 3k + 2
=> 2p + 1 = 2.(3k + 2) + 1 = 6k + 4 + 5 = 6k + 5 là số nguyên tố.
=> TH này được chọn vì đúng theo yêu cầu của đề bài.
=> 4p + 1 = 4.(3k + 2) + 1 = 12k + 8 + 1 = 12k + 9 = 3.(4k + 3) là hợp số.
Vậy 4p + 1 là hợp số (ĐPCM).
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì p là số nguyên tố lớn hơn 3 nên p sẽ có 2 dạng đó là: 3k + 1 và 3k + 2.
Ta chia làm 2 trường hợp:
- TH1: p = 3k + 1
=> 2p + 1 = 2.(3k + 1) + 1 = 6k + 2 + 1 = 6k + 3 = 3.(2k + 1) là hợp số.
=> TH này bị loại vì theo đề bài 2p + 1 phải là số nguyên tố.
- TH2: p = 3k + 2
=> 2p + 1 = 2.(3k + 2) + 1 = 6k + 4 + 5 = 6k + 5 là số nguyên tố.
=> TH này được chọn vì đúng theo yêu cầu của đề bài.
=> 4p + 1 = 4.(3k + 2) + 1 = 12k + 8 + 1 = 12k + 9 = 3.(4k + 3) là hợp số.
Vậy 4p + 1 là hợp số (ĐPCM).
+) Với p=3k+1
Ta có : 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số)
=>\(p\ne3k+1\)
+) Với p=3k+2
Ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5
Vì \(p\ne3k+1\) nên ta chộn trường hợp này
=> 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9=3(4k+3) (chia hết cho 3)
Vậy 4p+1 là hợp số
=>đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
cái này cậu chỉ cần mở vài quyển sách nâng cao ra là được mà
Nếu 8p-1 là số nguyên tố ; Nếu 8p+1 là hợp số => 8p+1 là số chẵn.
Ngoại trừ số 2 ra tất cả số chắn đều là hợp số .
Vậy 8p+1 là hợp số do nó là số chẵn (ĐPCM)
Chỗ "do nó là số chẵn" không viết cũng được
ai thấy đúng thì tk
ai thấy sai sửa giùm mình nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì 20p+1 là 1 số nguyên tố
=) 20p+1 không chia hết cho 3
=) 20p+1 : 3 dư 1 và dư 2
*Với 20p+1 : 3 dư 1 thì =) 20p+1+2 \(⋮3\)
*Với 20p+1 : 3 dư 2 thì =) 20p+1+1\(⋮3\)=) 20p+2\(⋮3\)=) 2.(10p+1)\(⋮3\)
(=) 10p+1\(⋮3\)( Vì 2 không chia hết cho 3 )
Vậy 10p+1 là hợp số (Đpcm)
Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 (k thuộc N).
* Với p=3k+1, ta có:
20p+1=20.(3k+1)+1=60k+20+1=60k+21 chia hết cho 3 => là hợp số=> loại
*Với p=3k+2, ta có:
20p+1=20.(3k+2)+1=60k+40+1=60k+41(là số nguyên tố)
10p+1=10.(3k+2)+1=30k+20+1=30k+21 chia hết cho 3 => là hợp số
Vậy với p là số nguyên tố lớn hơn 3 và 20p+1 cũng là số nguyên tố thì 10p+1 là hợp số.
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì 9 là SNT ( số nguyên tố ) lớn 3
=> p khi chia cho 3 có 2 dạng:
p = 3k + 1 hoặc p = 3k + 2 ( k thộc N* )
+) với: p = 3k + 1 => 2p + 1 = 2 . ( 3k + 1 ) + 1
= 6k + 2 + 1 = 6k + 3 chia hết cho 3 và lớn hơn 3
=> 2p + 1 là hợp số ( loại )
Vậy: p = 3k + 2
=> 4p + 1 = 4 . ( 3k + 2 ) + 1
= 12k + 8 + 1 = 12k + 9 chia hết cho 3 và lớn hơn 3
=> 4p + 1 là hợp số ( điều phải chứng minh )
Kết luận:
p nguyên tố > 3
=> p chia 3 dư 1,2
=> 2p + 1 chia 3 dư 0, 2
Mà 2p+1 nguên tố <=> 2p+1 chia 3 dư 2 <=> p chia 3 dư 2
=> 4p+1 = 4(3k+2) + 1 = 12k + 8 + 1 = 12k + 9 chia hết cho 3
=> 4p+1 là hợp số
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn hãy vào link sau nè:
https://olm.vn/hoi-dap/detail/17061171825.html
sẽ có lời giải đáp
![](https://rs.olm.vn/images/avt/0.png?1311)
Toán lớp 6Phân tích thành thừa số nguyên tố
Đinh Tuấn Việt 20/05/2015 lúc 22:51
Theo đề bài ta có:
a = p1m . p2n $\Rightarrow$⇒ a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.
nguyên 24/05/2015 lúc 16:50
Theo đề bài ta có:
a = p1m . p2n $$
a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$$
m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 0
Captain America