Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\left(2018-2019\right)\) Cho đường tròn tâm \(\left(2016-2017\right)\) Cho tam giác đều ABC nội tiếp đường tròn tâm O. Điểm E thay đổi trên cung nhỏ AB (E khác A và B). Từ B và C lần lượt kẻ các tiếp tuyến với đường tròn (O), các tiếp tuyến này cắt đường thẳng AE theo thứ tự tại M và N. Gọi F là giao điểm của BN và CM
a) Chứng minh rằng \(MB.CN=BC^2\)
b) Khi điểm E thay đổi trên cung nhỏ AB. Chứng minh rằng đường thẳng EF luôn đi qua một điểm cố định
3. \(\left(2015-2016\right)\) Cho tam giác nhọn \(AB>AC\). Các đường cao #Hỏi cộng đồng OLM #Toán lớp 9

1. \(\left(2018-2019\right)\) Cho đường tròn tâm \(\left(2016-2017\right)\) Cho tam giác đều ABC nội tiếp đường tròn tâm O. Điểm E thay đổi trên cung nhỏ AB (E khác A và B). Từ B và C lần lượt kẻ các tiếp tuyến với đường tròn (O), các tiếp tuyến này cắt đường thẳng AE theo thứ tự tại M và N. Gọi F là giao điểm của BN và CM
a) Chứng minh rằng \(MB.CN=BC^2\)
b) Khi điểm E thay đổi trên cung nhỏ AB. Chứng minh rằng đường thẳng EF luôn đi qua một điểm cố định
3. \(\left(2015-2016\right)\) Cho tam giác nhọn \(\left(2014-2015\right)\) Cho tam giác ABC vuông ở A có đường cao AH, trên cạnh BC lấy điểm E, F sao cho CE = CA, BF = BA. Gọi I, I1, I2 lần lượt là tâm đường tròn nội tiếp các tam giác ABC, ABH, ACH và M là giao điểm của BI và AC. Chứng minh rằng
a) Ba điểm A, I1, E thẳng hàng và IE = IF
b) Đường thẳng FM là tiếp tuyến của đường tròn ngoại tiếp tam giác II1I2
5. \(\left(2013-2014\right)\) Cho tam giác \(AB=AC=a\), \(\widehat{BAC}=120^o\). Ký hiệu #Hỏi cộng đồng OLM #Toán lớp 9

Cho hai điểm #Hỏi cộng đồng OLM #Toán lớp 9

Trên mặt phẳng tọa độ \(y=mx-\dfrac{5m}{3}\) (với #Hỏi cộng đồng OLM #Toán lớp 9

Cho hai điểm #Hỏi cộng đồng OLM #Toán lớp 9

Cho tam giác #Hỏi cộng đồng OLM #Toán lớp 9
Đặt A=3p−2p−13p−2p−1
Do 3 lẻ nên A⋮2⋮2 (1)
Do p lẻ nên 2p+1≡0(mod3)2p+1≡0(mod3) => A⋮3⋮3 (2)
Do p là số nguyên tố nên p=6k+1 hoặc p=6k+5
+TH1: p=6k+1 => A≡3−2−1≡0(mod7)≡3−2−1≡0(mod7)
+Th2: p=6k+5 => a≡35−25−1≡0(mod7)≡35−25−1≡0(mod7)
=> A⋮7⋮7 (3)
Theo định lí Fermat ta có:3p≡3(modp)3p≡3(modp)
2p≡2(modp)2p≡2(modp)
=>A⋮p⋮p (4)
Từ (1) (2) (3) (4) => A⋮42p⋮42p (do (2;3;7;p)=1)