Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Có hai đáp số tương ứng với hai vị trí của điểm D
*Trường hợp D nằm giữa C và B
VÌ C nằm chính giữa A và B nên :
![](https://rs.olm.vn/images/avt/0.png?1311)
Trường hợp 1: D nằm giữa A và C
=>\(\widehat{AOD}=90^0-60^0=30^0\)
=>\(\widehat{DOB}=150^0\)
Trường hợp 2: D nằm giữa B và C
ΔOCD cân tại O có CD=OC
nên ΔOCD đều
=>\(\widehat{COD}=60^0\)
hay \(\widehat{BOD}=30^0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Do \(OC=OD=CD=R\Rightarrow\Delta OCD\) là tam giác đều
\(\Rightarrow\widehat{COD}=60^0\)
Mà \(\widehat{CAD}=\dfrac{1}{2}\widehat{COD}\) (góc nt và góc ở tâm cùng chắn CD)
\(\Rightarrow\widehat{CAD}=30^0\)
AB là đường kính nên \(\widehat{ADB}\) là góc nt chắn nửa đường tròn \(\Rightarrow\widehat{ADB}=90^0\)
\(\Rightarrow\widehat{ADP}=90^0\Rightarrow\widehat{APB}=180^0-\left(90^0+30^0\right)=60^0\)
Tương tự ta có \(\widehat{ACB}\) là góc nt chắn nửa đường tròn
\(\Rightarrow\widehat{ACB}=90^0\Rightarrow\widehat{BCP}=90^0\)
\(\Rightarrow\widehat{CQD}=360^0-\left(\widehat{APB}+\widehat{ADP}+\widehat{ACB}\right)=360^0-\left(60^0+90^0+90^0\right)=120^0\)
\(\Rightarrow\widehat{AQB}=\widehat{CQD}=120^0\) (2 góc đối đỉnh)
Xét tam giác COD có:
OC=OD=CD=R
=> tam giác COD là tam giác đều
=> góc COD=60 độ (t/c tam giác đều)
Mà cung CD= góc COD= 60 độ ( góc COD là góc ở tâm chắn cung CD)
=> sđ cung CD= 60 độ
* Xét trường hợp điểm D gần điểm B
=> D thuộc cung BC
=> sđ cung BC= sđ cung CD= sđ cung BD (1)
Ta lại có điểm C là điểm nằm chính giữa cung AB (gt)
=> sđ cung AC= sđ cung BC= sđ cung AB/2= 180 độ/2= 90 độ
Thay vào (1) ta có:
90 độ= 60 độ+ sđ cung BD
=> sđ cung BD= 90 độ - 60 độ= 30 độ
* Xét trường hợp điểm D nằm gần điểm A
=> C thuộc cung BD
=> sđ cung BD= sđ cung BC+ sđ cung CD
=> sđ cung BD= 90 độ + 60 độ= 150 độ