K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2021

a) Theo tính chất hai tiếp tuyến cắt nhau ta có IA = IB = IC.

Do đó tam giác ABC vuông tại A.

Lại có \(IO_1\perp AB;IO_2\perp AC\) nên tam giác \(IO_1O_2\) vuông tại I.

b) Đầu tiên ta chứng minh kết quả sau: Cho hai đường tròn (D; R), (E; r) tiếp xúc với nhau tại A. Tiếp tuyến chung BC (B thuộc (D), C thuộc (E)). Khi đó \(BC=2\sqrt{Rr}\).

Thật vậy, kẻ EH vuông góc với BD tại H. Ta có \(DH=\left|R-r\right|;DE=R+r\) nên \(BC=EH=\sqrt{DE^2-DH^2}=2\sqrt{Rr}\).

Trở lại bài toán: Giả sử (O; R) tiếp xúc với BC tại M.

Theo kết quả trên ta có \(BM=2\sqrt{R_1R};CM=2\sqrt{RR_2};BC=2\sqrt{R_1R_2}\).

Do \(BM+CM=BC\Rightarrow\sqrt{R_1R}+\sqrt{R_2R}=\sqrt{R_1R_2}\Rightarrow\dfrac{1}{\sqrt{R}}=\dfrac{1}{\sqrt{R_1}}+\dfrac{1}{\sqrt{R_2}}\).

P/s: Hình như bạn nhầm đề

31 tháng 5 2018

Ai giúp câu a, câu d vs

16 tháng 5 2021

bMq617o.png

( Mình sẽ làm tắt nha bạn, mấy chỗ đấy nó dễ rùi nếu ko hiểu thì cmt nhé )

a) Ta có: \(O_1B//O_2C\)( cùng vuông góc với BC )

\(\Rightarrow\widehat{BO_1A}+\widehat{CO_2A}=180^0\)

\(\Leftrightarrow\left(180^0-2\widehat{BAO_1}\right)+\left(180^0-2\widehat{CAO_2}\right)=180^0\)

\(\Leftrightarrow2\left(\widehat{BAO_1}+\widehat{CAO_2}\right)=180^0\)

\(\Leftrightarrow\widehat{BAO_1}+\widehat{CAO_2}=90^0\)

\(\Rightarrow\widehat{BAC}=90^0\)

=> tam giác ABC vuông tại A

b) \(\widehat{O_1BA}+\widehat{MBA}=\widehat{O_1AB}+\widehat{BAM}=90^0\)

\(\Rightarrow\widehat{O_1AM}=90^0\)

\(\Rightarrow AM\perp AO_1\)

=> AM là tiếp tuyến của \(\left(O_1\right)\)

CMTT : AM là tiếp tuyến của \(\left(O_2\right)\)

=> AM là tiếp tuyến chung của \(\left(O_1\right);\left(O_2\right)\)

+) Ta có: \(\hept{\begin{cases}\widehat{BMO_1}=\widehat{AMO_1}\\\widehat{CMO_2}=\widehat{AMO_2}\end{cases}}\)

Ta có; \(\widehat{BMO_1}+\widehat{AMO_1}+\widehat{CMO_2}+\widehat{AMO_2}=180^0\)

\(\Leftrightarrow2\left(\widehat{O_1AM}+\widehat{AMO_2}\right)=180^0\)

\(\Leftrightarrow\widehat{O_1AM}+\widehat{AMO_2}=90^0\)

\(\Leftrightarrow\widehat{O_1MO_2}=90^0\)

\(\Rightarrow O_1M\perp O_2M\)

d) Ta có: \(\widehat{O_1BA}=\widehat{O_1AB}=\widehat{O_2AD}=\widehat{O_2DA}\)

\(\widehat{\Rightarrow O_1BA}=\widehat{O_2DA}\)mà 2 góc này ở vị trí so le trong

\(\Rightarrow O_1B//O_2D\)

\(\Rightarrow\frac{AB}{AD}=\frac{AO_1}{AO_2}\left(1\right)\)

CMTT \(\Rightarrow\frac{AE}{AC}=\frac{AO_1}{AO_2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{AB}{AD}=\frac{AE}{AC}\)

\(\Rightarrow AB.AC=AD.AE\)

\(\Rightarrow\frac{1}{2}AB.AC=\frac{1}{2}AD.AE\)

\(\Rightarrow S_{\Delta ADE}=S_{\Delta ABC}\)

11 giờ trước (8:06)

Giả thiết:

  • - Hai đường tròn (O; R) và (O'; R) cắt nhau tại A và B.
  • - Vẽ các bán kính OC và O'D sao cho OC // O'D.
  • - Các điểm C và D nằm cùng phía với A so với OO'.

1. Chứng minh AK // BD

  • Vì OC // O'D nên ∠COB = ∠DO'B (hai góc so le trong bằng nhau).
  • Mà CO và DO' là bán kính, nên tam giác COB và DO'B là hai tam giác có góc tại B bằng nhau và có cạnh OB chung.
  • Xét tam giác COB và tam giác DO'B, ta có:
    • ∠COB = ∠DO'B
    • OB chung
      → ∠CBO = ∠DBO
  • Xét tứ giác ABCD:
    • A, B là giao điểm của hai đường tròn
    • OC và O'D là bán kính nên CO = R = O'D
    • OC // O'D ⇒ tam giác COB và DO'B đồng dạng
  • Do đó: ∠CAB = ∠DBA (vì cùng bằng ∠COB)

→ ΔAKB và ΔDAB có góc tại K và D bằng nhau,
→ Mà AB là cạnh chung, nên AK // BD (góc so le trong hoặc đồng vị).

Kết luận: AK song song với BD.


2. Chứng minh A là trực tâm tam giác BCD

Ta cần chứng minh rằng A là giao điểm ba đường cao của tam giác BCD.

Ta chứng minh A nằm trên ba đường cao của tam giác BCD, tức là:

  • - A là trực tâm của tam giác BCD nếu:
    • -- A nằm trên đường vuông góc với CD kẻ từ B,
    • -- A nằm trên đường vuông góc với BC kẻ từ D,
    • -- A nằm trên đường vuông góc với BD kẻ từ C.

Cách chứng minh:

  • - Vì C nằm trên đường tròn (O), D nằm trên đường tròn (O') và OC // O'D ⇒ tứ giác CODD là hình bình hành suy biến hoặc có tính chất đặc biệt.
  • - Ta có OC ⊥ AB (vì tam giác COA cân tại O, góc ở A là 90 độ).
  • - Tương tự, O'D ⊥ AB ⇒ AB ⊥ CD

→ Suy ra AB ⊥ CD

Tức là: A nằm trên đường vuông góc với CD kẻ từ B

  • - Tương tự, ta có thể chứng minh AB ⊥ BC và AB ⊥ BD ⇒ A nằm trên hai đường cao còn lại.

Vậy A là giao điểm ba đường cao của tam giác BCD.

Kết luận: A là trực tâm tam giác BCD.🤡

Em xin tick ạ ! 🥺🥺🤡🤡🤡

10 giờ trước (8:40)

Qua A, kẻ tiếp tuyến Ax với (O1) và (O2), Ax cắt BC tại K

Xét (O1) có

KB,KA là các tiếp tuyến

Do đó: KB=KA

Xét (O2) có

KA,KC là các tiếp tuyến

Do đó: KA=KC

mà KA=KB

nên KB=KC

=>K là trung điểm của BC

Xét ΔABC có

AK là đường trung tuyến

\(AK=\frac{BC}{2}\)

Do đó: ΔABC vuông tại A

=>\(\hat{BAC}=90^0\)

4 tháng 3 2020

Ban co de hsg Hai Phong nam 2019-2020 ko cho mik xin voi

a) dung phuong h

b) Ap dung cau a va bien doi mot chut

c) chua nghi ra 

5 tháng 3 2020

phuong h là cái gị

1,a/giải hệ \(x+y+\frac{1}{x}+\frac{2}{y}=5\)và      \(x^2+y^2+\frac{1}{x^2}+\frac{4}{y^2}=7\)b/ giải phương trình \(\frac{x+\sqrt{1-x^2}}{1-2x^2}=1\)2,a/ các cạnh a,b,c của tam giác ABC thoả mãn đẳng thức sau.hỏi tam giác ABC là tam giác gì?\(\frac{1}{P}=\frac{1}{P-a}-\frac{1}{P-b}-\frac{1}{P-c}\)b/ các số dương x,y,z thoả mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)                                và            x+y+z=2 hãy...
Đọc tiếp

1,a/giải hệ \(x+y+\frac{1}{x}+\frac{2}{y}=5\)

và      \(x^2+y^2+\frac{1}{x^2}+\frac{4}{y^2}=7\)

b/ giải phương trình \(\frac{x+\sqrt{1-x^2}}{1-2x^2}=1\)

2,a/ các cạnh a,b,c của tam giác ABC thoả mãn đẳng thức sau.hỏi tam giác ABC là tam giác gì?

\(\frac{1}{P}=\frac{1}{P-a}-\frac{1}{P-b}-\frac{1}{P-c}\)

b/ các số dương x,y,z thoả mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)

                                và            x+y+z=2

 hãy tính \(P=\sqrt{\left(1+X\right)\left(1+y\right)\left(1+z\right)}\left(\frac{\sqrt{x}}{1+x}+\frac{\sqrt{y}}{1+y}+\frac{\sqrt{z}}{1+z}\right)\)

3, ba đường tròn (O,R),(O1,R1).(O2,R2) vời R<R1<R2 tiếp xúc ngoài với nhau từng đôi một đồng thời cùng tiếp xúc với một đường thẳng,gọi S, S1, S2 lần lượt là diện tích các hình tròn tâm O,O1,O2.

Chứng minh \(\frac{1}{\sqrt[4]{S}}=\frac{1}{\sqrt[4]{S1}}+\frac{1}{\sqrt[4]{S2}}\)

4,Cho đường tròn tâm O bán kính R và đường tròn tâm O' bán kính R' cắt nhau tại A Và B. TRên tia đổi của tia AB,lấy điểm C,Kẻ tiếp tuyến CD.CE với đường tròn tâm O(D,E là các tiếp điểm và E nằm trong đường tròn tâm O') đường thẳng AD.AE cắt đường tròn tâm O' lần lượt tại M,N (M và N khác A) tia DE cắt MN tại I ,chứng minh rằng

a, tam giác MIB đồng dạng với tam giác AEB

b. O'I vuông góc với MN

5, tam giác ABC Có góc A không nhọn, BC =a,CA=b,AB=c

Tìm Min của P=(1-a/b)(1-b/c)(1-c/a)

2
15 tháng 5 2016

Có vẻ phê ...

15 tháng 5 2016

Bạn đăng từng câu 1 thui chứ, nhìn cái đề đã thấy sợ r ns j lak lm