Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình mình ko tiện vẽ nên có thể hơi khó hiểu
a) xét t/g EAB có : P tđ AE, O tđ AB => OP//EB. mà EP vuông góc FB => PO vuông góc FB
xét t/g PFB có PO là đường cao, BA là đường cao, BA giao PO tại O
=> O là trực tâm t/g => FO vuông góc PB. Mà QH vuông góc PB => QH//OF
xét t/g AFO có Q tđ AF, QH//OF => H tđ OA (đpcm)
b) Xét t/g CBD có : BO= 1/2 CD (=R) , BO là trung tuyến => t/g CBD vuông tại B
Xét t/g EBF có: EBF = 90 độ, BA là đường cao => AB^2 = AE.AF
Ta có: AE.AF ≤ (AE+AF)^2/4
=> AB^2 ≤ EF^2/4
=> AB ≤ EF/2 (do AB, EF >0)
=> EF.AB/2 ≥ AB^2
=> diện tích EBF ≥ AB^2
lại có diện tích BPQ = PQ.AB/2= [(1/2.AE+ 1/2.AF).AB]/2= EF.AB/4= diện tích EBF/2
=> diện tích BPQ ≥ AB^2/2
dấu "=" <=> AE= AF => A tđ EF
xét t/g EBF có BA là trung tuyến, BA là đường cao => t/d EBF cân tại B => BA là phân giác
xét t/g CBD có: BO là trung tuyến, BO là phân giác => t/g CBD cân tại B => BO là đường cao => AB vuông góc CD
Vậy t.g BPQ có dt nhỏ nhất <=> AB vuông góc CD
Oke, nếu thấy đúng thì cho mik xin 1 k nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
tui cũng mới đăng 1 bài y chang lun nhưng ko ai giải huhu
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn vẽ hình ra
do ÈF là tiếp tuyến nên EF vuông góc AB nên góc BAD =90 \(\Rightarrow\)góc BAD + góc DAF =90 mà góc DAF + góc F = góc ADF=90( ADF chắn nửa đg tròn)
\(\Rightarrow\)góc BAD = góc F
lại có góc BAD = góc BCD( 2 góc nội tiếp cùng chắn cung BD)
góc F = góc BCD
mặt khác góc BCD + góc DCE =180( 2 góc kề bù)
\(\Rightarrow\)góc F + góc DCE =180 \(\Rightarrow\)tg CDFE nội tiếp
b) Aps dụng hệ thức lượng trong \(\Delta BEF\)có BAvuông góc EF ta có \(AB^2=EA\times AF\Rightarrow AB^4=EA^2\times AF^2vàBE\times BF=AB\times EF\)
Tương tự \(\Delta BAE\)có AC vuông góc BE ta có \(EA^2=CE\times BE\)
\(\Delta BAD\)có AD vuông góc BF ta có \(AF^2=DF\times BF\)
TA CÓ \(AB^4=CE\times BE\times DF\times BF=CE\times DF\times AB\times EF\Rightarrow CE\times DF\times EF=AB^3\)
mình chăc chắn câu (B) là CE.DE.EF=AB^3 chứ ko phải là CF đâu ( chăc bạn nhìn nhầm rồi) và mk ms chỉ nghĩ đến câu b thui thông cảm
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 4:
a:
Xét (O) có
ΔCED nội tiếp
CD là đường kính
=>ΔCED vuông tại E
ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
Xét tứ giác CEMF có
I là trung điểm chung của CM và EF
CM vuông góc EF
=>CEMF là hình thoi
=>CE//MF
=<MF vuông góc ED(1)
Xét (O') có
ΔMPD nội tiêp
MD là đường kính
=>ΔMPD vuông tại P
=>MP vuông góc ED(2)
Từ (1), (2) suy ra F,M,P thẳng hàng
b: góc IPO'=góc IPM+góc O'PM
=góc IEM+góc O'MP
=góc IEM+góc FMI=90 độ
=>IP là tiếp tuyến của (O')