K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

Chọn đáp án A.

Do ABCDE là ngũ giác đều nội tiếp đường tròn (O) nên:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Suy ra, sđ  A B ⏜   =   72 °

14 tháng 5 2017

(B) 120o

2 tháng 6 2017

Chọn phương án (B)

Tam giác đều ABC nội tiếp đường tròn tâm O bán kính R. Khi đó \(\widehat{BOC}\) có số đo bằng \(120^0\)

13 tháng 6 2016

đây là hình nhé, để cung cấp cho cách giải:

 
A) 

Xét tứ giác CEHD ta có:

góc CEH = 900 (Vì BE là đường cao)

góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

13 tháng 6 2016

B) 

Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.

AD là đường cao => AD ┴ BC => BDA = 900.

Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.

Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.

2 tháng 6 2017

Chọn phương án (B)

Hình vuông XYZT nội tiếp đường tròn tâm O bán kính R. Điểm M bất kì thuộc cung XT. \(\widehat{ZMT}\) có số đo bằng \(45^0\)

a: xét (O) có

ΔCAB nội tiếp

AB là đường kính

Do đó: ΔCAB vuông tại C

b: Xét ΔCAB vuông tại C có \(cosBAC=\frac{AC}{AB}=\frac12\)

nên \(\hat{BAC}=60^0\)

ΔACB vuông tại C

=>\(CA^2+CB^2=AB^2\)

=>\(CB^2=AB^2-AC^2=\left(2R\right)^2-R^2=4R^2-R^2=3R^2\)

=>\(CB=R\sqrt3\)

c: Xét (O) có

MC,MB là các tiếp tuyến

Do đó: MC=MB

=>M nằm trên đường trung trực của CB(1)

ta có: OC=OB

=>O nằm trên đường trung trực của CB(2)

Từ (1),(2) suy ra MO là đường trung trực của CB

=>MO⊥CB

mà CA⊥CB

nên CA//OM

d: Gọi I là giao điểm của MA và CH, K là giao điểm của AC và MB

ΔACB vuông tại C

=>CA⊥CB tại C

=>CB⊥AK tại C

=>ΔKCB vuông tại C

Ta có: \(\hat{MCB}+\hat{MCK}=\hat{KCB}=90^0\)

\(\hat{MBC}+\hat{MKC}=90^0\) (ΔKCB vuông tại C)

\(\hat{MBC}=\hat{MCB}\) (ΔMBC cân tại M)

nên \(\hat{MCK}=\hat{MKC}\)

=>MC=MK

mà MC=MB

nên MB=MK(3)

ta có: KB⊥BA

CH⊥BA

DO đó: KB//CH

Xét ΔAMK có CI//MK

nên \(\frac{CI}{MK}=\frac{AI}{AM}\left(4\right)\)

Xét ΔAMB có IH//MB

nên \(\frac{IH}{MB}=\frac{AI}{AM}\) (5)

từ (3),(4),(5) suy ra CI=IH

=>I là trung điểm của CH

=>MA đi qua trung điểm I của CH