Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Ta thấy n;n+1;n+2 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 ; có 1 số chia hết cho 3
=> n.(n+1).(n+1) chia hết cho 2 và 3 hay n.(n+1).(n+2) là bội của 2 và 3
b, Ta thấy n;n+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => n.(n+1).(2n+1) chia hết cho 2 hay n.(n+1).(2n+1)là bội của 2
+ Nếu n = 3k ( k thuộc N ) thì n.(n+1).(2n+1) chia hết cho 3(1)
+ Nếu n = 3k+1(k thuộc N) thì 2n+1 = 6n+3 = 3.(n+1) chia hết cho 3 => n.(n+1).(2n+1) chia hết cho 3 (2)
+ Nếu n = 3k+2 (k thuộc N ) thì n+1 = 3n+3 = 3.(n+1) chia hết cho 3 => n(.n+1).(2n+1) chia hết cho 3(3)
Từ (1);(2) và (3) => n.(n+1).(2n+1) chia hết cho 3 hay n.(n+1).(2n+1) là bội của 3
=> ĐPCM

Làm tự luận nha các ban! Thời hạn là trước 7h nha vì 7h30 mi địch học rủi.

a) 6 là bội của n+1
=> 6 ⋮ n+1
=> n+1 thuộc Ư(6)={1;2;3;-1;-2;-3}
Lập bảng tìm n :
n+1 | 1 | 2 | 3 | -1 | -2 | -3 |
n | 0 | 1 | 2 | -2 | -3 | -4 |
Vậy n thuộc { 0;1;2;-2;-3;-4}
b) Xét n+1 là bội của 6
=> n+1 thuộc { 0; 6; 12; 18; ... }
=> n thuộc { -1; 5; 11; 17; .... }
Nhớ xét các t/h âm nữa nhé! Nhưng vì bội vô hạn nên chỉ cần thêm 1 - 2 số âm thôi nha ^^
c) 2n+3 là bội của n+1
=> 2n+3 ⋮ n+1
=> 2(n+1) + 1 ⋮ n+1
ta có 2(n+1) ⋮ n+1
=> 1 ⋮ n+1
=> n+1 thuộc Ư(1) = { 1; -1 }
=> n thuộc { 0; -2 }
d) tương tự
a) 6 là bội của n+1 => n+1 là ước của 6
Ư(6)= 1;2;3;6. Ta có bảng: ( bạn tự vẽ bảng nhé )
n+1 1 2 3 6
n 0 1 2 5
Vậy n = 0; 1; 2; 5
b) B(6)= 0;6;12;18;24;30;...... Ta có bảng:
n+1 0 12 18 24 30
n 0 11 17 23 29
Vậy n = 0;5;11;17;23;29;.....
c) ta có bảng:
n 0 1 2 3 4 5 6 7
2n+3 3 5 7 9 11 13 15 17
n+1 1 2 3 4 5 6 7 8
Vậy n = 0.

a, (n+10).(n+5) là bội của 2
Giải :
Ta có : 10 là số chẵn, 5 là số lẻ.
--> n+10 và n+5 sẽ có 2 trường hợp:
* n+10 là chẳn, n+5 là lẻ
* n+10 là lẻ, n+5 là chẵn
Mà chẵn x lẻ = chẵn và chẵn chia hết cho 2
---> (n+10).(n+5) là bội của 2
b, tương tự
Vì 2n+1 là số chính phương lẻ nên
2n+1≡1(mod8)⇒2n⋮8⇒n⋮42n+1≡1(mod8)⇒2n⋮8⇒n⋮4
Do đó n+1 cũng là số lẻ, suy ra
n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8
Lại có
(n+1)+(2n+1)=3n+2(n+1)+(2n+1)=3n+2
Ta thấy
3n+2≡2(mod3)3n+2≡2(mod3)
Suy ra
(n+1)+(2n+1)≡2(mod3)(n+1)+(2n+1)≡2(mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ nên
n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)
Do đó
n⋮3n⋮3
Vậy ta có đpcm.

- \(\left(n+10\right)\left(n+15\right)\)
+ Nếu \(n\)chẵn thì \(n+10\)chẵn nên \(\left(n+10\right)\left(n+15\right)\)là bội của \(2\).
+ Nếu \(n\)lẻ thì \(n+15\)chẵn nên \(\left(n+10\right)\left(n+15\right)\)là bội của \(2\).
- \(n\left(n+1\right)\left(n+2\right)\)là tích của \(3\)số tự nhiên liên tiếp nên có ít nhất \(1\)thừa số chia hết cho \(2\), \(1\)thừa số chia hết cho \(3\). Nên ta có đpcm.
- \(n\left(n+1\right)\left(2n+1\right)=n\left(n+1\right)\left[\left(n+2\right)+\left(n-1\right)\right]=\left(n-1\right)n\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)
có \(\left(n-1\right)n\left(n+1\right)\)và \(n\left(n+1\right)\left(n+2\right)\)đều là tích của \(3\)số tự nhiên liên tiếp nên có ít nhất \(1\)thừa số chia hết cho \(2\), \(1\)thừa số chia hết cho \(3\). Nên ta có đpcm.

a) ta có n+2=n-3+5
Để n+2 chia hết cho n-3 => n-3+5 chia hết cho n-3
=> 5 chia hết cho n-3
n nguyên =>n-3 nguyên => n-3 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng
n-3 | -5 | -1 | 1 | 5 |
n | -2 | 1 | 4 | 8 |
a) n-3+5 chia hết cho n-3
5 chia hết cho n- 3
còn lại cậu tự làm