![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\left(2n+5\right)^2-4n^2=\left(2n+5+2n\right)\left(2n+5-2n\right)=5.\left(4n+5\right)⋮\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(=3n^4-3n^3-11n^3+11n^2+10n^2-10n\)
\(=\left(n-1\right)\left(3n^3-11n^2+10n\right)\)
\(=n\left(n-1\right)\left(n-2\right)\left(3n-5\right)\)
\(=n\left(n-1\right)\left(n-2\right)\left(3n+3-8\right)\)
\(=3n\left(n-1\right)\left(n+1\right)\left(n-2\right)-8n\left(n-2\right)\left(n-1\right)\)
Vì n;n-1;n+1;n-2 là 4 số liên tiếp
nên n(n-1)(n+1)(n+2) chia hết cho 4!=24
mà -8n(n-2)(n-1) chia hết cho 24
nên A chia hết cho 24
b: \(=n\left(n^4-5n^2+4\right)\)
\(=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)
Vì đây là 5 số liên tiếp
nên \(n\left(n-1\right)\cdot\left(n-2\right)\left(n+1\right)\left(n+2\right)⋮5!=120\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a,
6n^2 - n + 5 2n + 1 3n - 2 6n^2 + 3n -4n + 5 -4n - 2 7 \
Để \(A⋮B\) \(\Leftrightarrow7⋮2n+5\) \(\Leftrightarrow2n+5\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)
Ta có bảng sau :
\(2n+5\) | \(1\) | \(7\) | \(-1\) | \(-7\) |
\(n\) | \(-2\) | \(1\) | \(-3\) | \(-6\) |
Vậy \(\left[{}\begin{matrix}n=-2\\n=1\\n=-3\\n=-6\end{matrix}\right.\) thì A chia hết cho B
b, tường tự câu a
Nếu mà bn ko lm đc thì nói mk ,mk sẽ giải cho
Đặt tính chia:
6n-n+5 2 2n+1 3n-2 6n+3n - 2 -4n+5 - -4n-2 _______________ 7
\(\Rightarrow\text{Để }A⋮B\\ \text{thì }\Rightarrow7⋮2n+1\\ \Rightarrow2n+1\inƯ_{\left(7\right)}\\ \text{Mà }Ư_{\left(7\right)}=\left\{\pm1;\pm7\right\}\)
Ta lập bảng giá trị :
\(2n+1\) | \(-1\) | \(1\) | \(-7\) | \(7\) |
\(n\) | \(-1\) | \(0\) | \(-4\) | \(3\) |
\(\Rightarrow n\in\left\{-4;-1;0;3\right\}\)
\(\text{Vậy }\text{ để }A⋮B\text{ thì }n\in\left\{-4;-1;0;3\right\}\)
b) Xem lại đề
\(\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b: \(\Leftrightarrow n^3-8+6⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
c: \(\Leftrightarrow n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
\(\Leftrightarrow n^2+n+1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow n^2+n+1\in\left\{1;3\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Để (2^n-1);7 thì nó phải thuộc U(7) =1:-1;7;-7
2^n-1 | 1 | -1 | 7 | -7 |
n | X | X | 3 | X |
Vậy n=3 thì (2^n-1);7
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Ta có:
\(x^{8n}+x^{4n}+1=(x^{4n})^2+2.x^{4n}+1-x^{4n}\)
\(=(x^{4n}+1)^2-x^{4n}=(x^{4n}+1+x^{2n})(x^{4n}+1-x^{2n})\)
Xét \(x^{4n}+1+x^{2n}=(x^{2n})^2+2.x^{2n}+1-x^{2n}=(x^{2n}+1)^2-x^{2n}\)
\(=(x^{2n}+1+x^n)(x^{2n}+1-x^n)\)
Do đó:
\(x^{8n}+x^{4n}+1=(x^{4n}+1-x^{2n})(x^{2n}+1+x^n)(x^{2n}+1-x^n)\)
\(\Rightarrow x^{8n}+x^{4n}+1\vdots x^{2n}+x^n+1\) (đpcm)
b)
Sửa đề: \(x^{3m+1}+x^{3n+2}+1\vdots x^2+x+1\)
Đặt \(A=x^{3m+1}+x^{3n+2}+1\)
\(\Leftrightarrow A=x(x^{3m}-1)+x+x^2(x^{3n}-1)+x^2+1\)
\(\Leftrightarrow A=x[ (x^3)^m-1]+x^2[(x^3)^n-1]+(x^2+x+1)\)
Khai triển:
\((x^3)^m-1=(x^3)^m-1^m=(x^3-1).T=(x-1)(x^2+x+1)T\)
(đặt là T vì phần biểu thức đó không quan trọng)
\(\Rightarrow (x^3)^m-1\vdots x^2+x+1\)
Tương tự, \((x^3)^n-1\vdots x^2+x+1\)
Do đó, \(A=x(x^{3m}-1)+x^2(x^{3n}-1)+x^2+x+1\vdots x^2+x+1\)
Ta có đpcm.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt : A = n4 + 2n3 - n2 -2n
Ta có : A = n4 + 2n3 - n2 -2n
A= n3.(n + 2) - n ( n + 2)
A=(n3 - n) .( n + 2)
A= n( n2 -1).( n+ 2)
A= (n - 1).n.( n +1).( n +2)
Do : (n - 1).n.( n +1).( n +2) là 4 STN liên tiếp
=> (n - 1).n.( n +1).( n +2) chia hết cho 2,3,4
Hay A= (n - 1).n.( n +1).( n +2) chia hết cho 24
ta có:2n.2n+52-4.n.n=4nn+25-4nn=(4nn-4nn)+25=25
25 chia hết cho 5=>(2n+5)2-4n2 chia hết cho 5