Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn ghi cách làm đi, mình tick cho. Có những đề làm ra mà số đó không tồn tại

a) x(16 - y2) = 497 => x = 497 : (16 - y2)
Vì x \(\in\) N nên 16- y2 > 0 và là ước của 497
+) 16 - y2 > 0 => y2 < 16 ; y là số tự nhiên nên y2 = 0;1; 4 hoặc 9 => 16 - y2 = 16; 15; 12; 7
Mà 497 chia hết cho 16 - y2 nên 16 - y2 = 7 => x = 497 : 7 = 71; y = 3
Vậy...
b) x + 1 luôn chia hết cho x+ 1 => x(x+1) = x2 + x chia hết cho x+1
Để x2 + 2x + 6 chia hết cho x+1 thì (x2 + 2x + 6) - (x2 + x) chia hết cho x+1
=> x + 6 chia hết cho x+1
Hay (x+1) + 5 chia hết cho x+1 => 5 chia hết cho x+1 =.> x+ 1 = 1 hoặc 5
+) x+1 = 1 => x = 0
+) x +1 = 5 => x = 4
Vậy....

a) \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)
Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\Rightarrow\frac{6}{5n-3}\in Z\Rightarrow5n-3\in U\left(6\right)\)
Ta có bảng sau:
5n - 3 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n | -0,6 | 0 | 0,2 | 0,4 | 0,8 | 1 | 1,2 | 1,8 |
Mà n thuộc Z => n = { 0 ; 1 }
b) Để A lớn nhất thì \(2+\frac{6}{5n-3}\)có giá trị lớn nhất => \(\frac{6}{5n-3}\)lớn nhất
=> 5n - 3 nguyên dương nhỏ nhất ; 5n - 3 thuộc ước của 6 và n thuộc Z
=> 5n - 3 = 2 => x = 1 và \(\frac{6}{5n-3}=\frac{6}{2}=3\)
Thay \(3=\frac{6}{5n-3}\)vào \(A=2+\frac{6}{5n-3}\)ta có:
\(A=2+3=5\)
Vậy giá trị lớn nhất của A là 5 khi x = 1
a, Ta có : \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}\)
\(=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)
\(=2+\frac{6}{5n-3}\)
Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\)
\(\Rightarrow\frac{6}{5n-3}\in Z\)
\(\Rightarrow6\)chia hết cho\(5n-3\)
\(\Rightarrow5n-3\inƯ\left(6\right)\)
Ta có bảng sau :
5n-3 | 1 | -1 | 2 | -2 | 3 | -3 |
5n | 4 | 2 | 5 | 1 | 6 | 0 |
n | 0,8 | 0,4 | 1 | 0,2 | 1,2 | 0 |
Vì \(n\in Z\)=> \(n\in\left\{0;1\right\}\)

Ta có: A> / x-1+5-x/
A>hoặc =/ 4/
Min A= 4 đạt đc khi x-1 và 5-x cùng dấu
th1: Nếu \(\hept{\begin{cases}x-1>0\\5-x>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>=2\\x< =5\end{cases}}\)( lớn ( bé) hơn hoặc =)
\(\Rightarrow x\in1,2,3,4,5\)
th2: Nếu \(\hept{\begin{cases}x-1< 0\\5-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 1\\x>5\end{cases}}}\)
\(\Rightarrow x\in\)rỗng
Vậy...........
B= /x+1/+ /x-8/
Ta có: x-8 và 8-x là 2 số đối nhau \(\Rightarrow\)/x-8/=/8-x/
\(\Rightarrow\)B= /x+1/+/8-x/
B > /x+1+8-x/
B >=9
Min 9 đạt đc khi x+1 và 8-x cùng dấu.
th1: Nếu \(\hept{\begin{cases}x+1>0\\8-x>0\end{cases}\Rightarrow\hept{\begin{cases}x>=-1\\x< =8\end{cases}}}\)
\(\Rightarrow x\in-1,0,1,2,3,4,5,6,7,8\)
th2: Nếu \(\hept{\begin{cases}x+1< 0\\8-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< =-1\\x>=-8\end{cases}}}\)
\(\Rightarrow x\in\)rỗng
N = 497 - ( x - 1 )2 \(\le\)497
\(N=497-\left(x-1\right)^2\)
Ta có:
\(\left(x-1\right)^2\ge0\)
\(\Rightarrow N_{Max}=497\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)