Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Cạnh huyền chính bằng đường kính đáy do vậy bán kính đáy r = và đường cao h = r, đwòng sinh l = a.
Vậy Sxq = πrl = ( đơn vị diện tích)
Sđáy = =
( đơn vị diện tích);
Vnón =
( đơn vị thể tích)
b) Gọi tâm đáy là O và trung điểm cạnh BC là I.
Theo giả thiết, = 600.
Ta có diện tích ∆ SBC là: S = (SI.BC)/2
Ta có SO + SI.sin600 = .
Vậy .
Ta có ∆ OIB vuông ở I và BO = r = ;
OI = SI.cos600 = .
Vậy BI = và BC =
.
Do đó S = (SI.BC)/2 = (đơn vị diện tích)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\int\dfrac{\left(1+lnx\right)^2}{x}dx=\int\left(1+lnx\right)^2d\left(1+lnx\right)=\dfrac{1}{3}\left(1+lnx\right)^3+C\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có thiết diện qua trục của hình nón là tam giác vuông cân SAb, cạnh huyền A B = a 2
Vậy đường cao, bán kính và đường sinh của hình nón là:
Diện tích xung quanh và diện tích toàn phần của hình nón là:
![](https://rs.olm.vn/images/avt/0.png?1311)
Mặt cầu (S) có tâm I(-2;-1;1) và bán kính \(R=\sqrt{5}\)
Gọi r là bán kinh đường tròn thiết diện, theo giả thiết ta có : \(S=\pi\Leftrightarrow r^2.\pi=\pi\Rightarrow r=1\)
Gọi d là khoảng cách từ I đến mặt phẳng \(\alpha\), ta có \(d^2=R^2-r^2=5-1\Rightarrow d=2\)
Mặt phẳng \(\alpha\), qua N (0;-1;0) có dạng \(Ax+B\left(y+1\right)+Cz=0\Leftrightarrow Ax+By+Cz+B=0\left(A^2+B^2+C^2\ne0\right)\)
Mặt khác, \(\alpha\) qua M(1;-1;1) nên thỏa mãn \(A+C=0\Rightarrow\text{ }\) \(\alpha:Ax+By-Az+B=0\)
Vì \(d=d\left(I,\alpha\right)=\frac{\left|-3A\right|}{\sqrt{2A^2+B^2}}=2\Leftrightarrow A^2=4B^2\Rightarrow\frac{A}{B}=\pm2\) vì \(A^2+B^2+C^2\ne0\)
Do đó có 2 mặt phẳng \(\alpha\), cần tìm là \(2x+y-2z+1=0\) và \(2x-y-2z-1=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Chọn B
Mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=9 có tâm I (1;2;3), bán kính R=3.
IA = √6 < R nên A nằm trong mặt cầu.
Gọi r là bán kính đường tròn thiết diện, ta có
Trong đó h là khoảng cách từ I đến (P).
Diện tích thiết diện là
Vậy diện tích hình tròn (C) đạt nhỏ nhất khi h = IA. Khi đó là véc tơ pháp tuyến của (P).
Phương trình mặt phẳng (P) là 1 (x-0)+2 (y-0)+ (z-2)=0 ó x + 2y + z – 2 = 0
Chọn D.
(h.2.60) Bán kính đáy của hình nón là a, đường sinh của hình nón là 2a.
Do đó, ta có:
S 1 = π Rl = π .a.2a = 2 πa 2 (1)
Mặt cầu có bán kính là a 3 /2, nên ta có:
Từ (1) và (2) suy ra: 2 S 2 = 3 S 1