
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


F1 F2 A1 A2 B2 B1 y x o
Viết lại phương trình (E):\(\dfrac{x^2}{25}+\dfrac{y^2}{9}=1\)
a) Từ phương trình ta có: a2=25=>a=5 =>A1(-5;0) A2(5;0)
b2=9=>b=3 =>B1(0;-3) B2(0;3)
c2=a2-b2=25-9=16 =>c=4
=> F1(-4;0) F2(4;0)
b) Giả sử tọa độ điểm M(m;n)
MF1 góc với MF2 => (m+4)(m-4) + n2=0
<=> m2+n2=16 =>9m2+9n2=144(1)
Do M thuộc (E) nên 9m2+25n2=225(2)
Trừ vế với vế của (2) cho (1) ta được 16n2=81
=> \(n=_-^+\dfrac{9}{4}\)
với n\(=\dfrac{9}{4}\)=> m=\(\dfrac{5\sqrt{7}}{4}\)
với n\(=-\dfrac{9}{4}\)=> m\(=\dfrac{5\sqrt{7}}{4}\)
Vậy tọa độ M thỏa mãn là \(\left(\dfrac{5\sqrt{7}}{4};\dfrac{9}{4}\right)\)và\(\left(\dfrac{5\sqrt{7}}{4};-\dfrac{9}{4}\right)\)

Phương trình đường ELIP có dạng (E) :
(E) đi qua M(0; 3), nên :
=>b= 3.
(E) đi qua N(3; -12/5), nên :
=> a = 5.
Phương trình đường ELIP có dạng (E) :
có tiệu điểm F(; 0) => c =
=> a2 – b2 = 3 (1)
(E) đi qua M(1 ; ), nên :
(2)
Từ (1) và (2) , ta được :
a2 = 4 ; b2 = 1
vậy : (E) :

a) Ta có: a2 = 25 => a = 5 độ dài trục lớn 2a = 10
b2 = 9 => b = 3 độ dài trục nhỏ 2a = 6
c2 = a2 – b2 = 25 - 9 = 16 => c = 4
Vậy hai tiêu điểm là : F1(-4 ; 0) và F2(4 ; 0)
Tọa độ các đỉnh A1(-5; 0), A2(5; 0), B1(0; -3), B2(0; 3).
b)
4x2 + 9y2 = 1 <=> +
= 1
a2= => a =
=> độ dài trục lớn 2a = 1
b2 = => b =
=> độ dài trục nhỏ 2b =
c2 = a2 – b2
= -
=
=> c =
F1(- ; 0) và F2(
; 0)
A1(-; 0), A2(
; 0), B1(0; -
), B2(0;
).
c) Chia 2 vế của phương trình cho 36 ta được :
=> +
= 1
Từ đây suy ra: 2a = 6. 2b = 4, c =\(\sqrt{5}\)
=> F1(-\(\sqrt{5}\) ; 0) và F2(\(\sqrt{5}\) ; 0)
A1(-3; 0), A2(3; 0), B1(0; -2), B2(0; 2).