\(y=\left(\sqrt{m}-\sqrt{n}-\sqrt{m-n}\right)x+m-n\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2017

Để chứng minh hàm số \(y=\left(\sqrt{m}-\sqrt{n}-\sqrt{m-n}\right)x+m-n\) nghịch biến ta cần chứng minh \(\sqrt{m}-\sqrt{n}-\sqrt{m-n}< 0\).
Giả sử \(\sqrt{m}-\sqrt{n}-\sqrt{m-n}< 0\)
\(\Leftrightarrow\sqrt{m}-\sqrt{n}-\sqrt{m-n}< 0\)
\(\Leftrightarrow\sqrt{m}-\sqrt{n}< \sqrt{m-n}\) (*)
\(m>n>0\) nên \(\sqrt{m}>\sqrt{n}\) ta bình phương hai vế của (*) ta có:
\(m+n-2\sqrt{m.n}< m-n\)
\(\Leftrightarrow2n-2\sqrt{mn}< 0\)
\(\Leftrightarrow2\sqrt{n}\left(\sqrt{n}-\sqrt{m}\right)< 0\)
\(\Leftrightarrow\sqrt{n}-\sqrt{m}< 0\)
\(\Leftrightarrow\sqrt{n}< \sqrt{m}\)
\(\Leftrightarrow n< m\) (luôn đúng).
Ta có điều phải chứng minh.

2 tháng 12 2019

a. Vì \(a=\left(3-2\sqrt{2}\right)< 0\)

\(\Rightarrow\) Hàm số nghịch biến trên R

b. Thay \(x=3+2\sqrt{2}\)

\(\Rightarrow y=\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)+\sqrt{2}-1=\sqrt{2}\)

c. Thay \(y=0\Rightarrow0=\left(3-2\sqrt{2}\right)x+\sqrt{2}-1\)

\(\Leftrightarrow x=\frac{1-\sqrt{2}}{3-2\sqrt{2}}=-1-\sqrt{2}\)

14 tháng 1 2018

Ta co : \(\dfrac{2\sqrt{x.\left(x-z\right)}}{2}\le\dfrac{x+x-z}{2}\)

\(\dfrac{2\sqrt{z\left(y-x\right)}}{2}\le\dfrac{z+y-x}{2}\)

VT≤\(\dfrac{2x-z}{2}+\dfrac{z+y-x}{2}=\dfrac{2x-z+z+y-x}{2}\)

=\(\dfrac{x+y}{2}\le\sqrt{xy}\)

=> DPCM

Toan bo dung bdt Co Si nha

14 tháng 1 2018

phủ định ddpcm

17 tháng 11 2019

bi dien

17 tháng 11 2019

Sao điên.

18 tháng 11 2016

B1a) m khác 5, khác -2

b) m khác 3, m < 3

B2a) vì căn 5 -2 luôn lớn hơn 0 nên hsố trên đồng biến

b) h số trên là nghịch biến vì 2x > căn 3x

c) bạn hãy đưa h số về dạng y=ax+b là y= 1/6x+1/3 mà 1/6 >0 => h số đồng biến