Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
theo trường mình chấm bài thì vẽ hình sai là bài đó không có điểm
P/s: chúa phù hộ bạn=))
![](https://rs.olm.vn/images/avt/0.png?1311)
hình bạn tự vẽ nhé
a. ví tam giác ABC là tam giác cân và có góc A bằng 90 độ nên tam giác ABC là tam giác vuông cân tại A
=> góc BAC = 90 độ và AB=AC
Xét tứ giác ABIC có góc BAC =90 độ, góc ABI = 90 độ (vì AIvuông góc với AB ), góc ACI =90độ (vì AC vuông góc với CI)
=> tứ giác ABIC là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)
mà AB=AC (cmt)
=> Tứ giác ABIC là hình vuông (dấu hiệu nhận biết hình vuông)
=> AI là phân giác góc BAC
![](https://rs.olm.vn/images/avt/0.png?1311)
Tớ giải vầy, các bạn xem rồi nhận xét nhé!
*Bài làm
Kéo dài AM một đoạn ME sao cho AM=ME
Xét tam giác ABM và tam giác ECM:
AM=ME(gt)
Góc BMA=CME(đối đỉnh)
BM=MC(gt)
=> Tam giác ABM=tam giác ECM(c-g-c)
Suy ra:
AB=EC và góc BAM=CEM
Xét tam giác ACE có: EC<AC. Suy ra:
Góc CAE<CEA=>góc CAM<CEM=>góc CAM<BAM
b/ Xét tam giác MCD. Ta có:
Góc MDC=Góc MAD+AMD (1)
Vì góc BMD là góc ngoài tam giác CMD nên ta có:
Góc BMD=MCD+MDC
=> 2*góc AMD=góc MCD+MDC (2)
Từ (1) suy ra:
2*góc MDC=2*góc MAD+2*góc AMD=>2*MDC=2*MAD+MCD+MDC
=> MDC=2*MAD+MCD
Vậy Góc MDC>MCD suy ra CM>MD
Tớ giải vầy, các bạn xem rồi nhận xét nhé!
*Bài làm
Kéo dài AM một đoạn ME sao cho AM=ME
Xét tam giác ABM và tam giác ECM:
AM=ME(gt)
Góc BMA=CME(đối đỉnh)
BM=MC(gt)
=> Tam giác ABM=tam giác ECM(c-g-c)
Suy ra:
AB=EC và góc BAM=CEM
Xét tam giác ACE có: EC<AC. Suy ra:
Góc CAE<CEA=>góc CAM<CEM=>góc CAM<BAM
b/ Xét tam giác MCD. Ta có:
Góc MDC=Góc MAD+AMD (1)
Vì góc BMD là góc ngoài tam giác CMD nên ta có:
Góc BMD=MCD+MDC
=> 2*góc AMD=góc MCD+MDC (2)
Từ (1) suy ra:
2*góc MDC=2*góc MAD+2*góc AMD=>2*MDC=2*MAD+MCD+MDC
=> MDC=2*MAD+MCD
Vậy Góc MDC>MCD suy ra CM>MD
Ai k mk mk k lại!
![](https://rs.olm.vn/images/avt/0.png?1311)
B A K H C E
a. Xét tam giác vuông BKH và tam giác vuông BCA có:
+ BK = BC (gt)
+ B là góc chung
=> tam giác vuông BKH = tam giác vuông BCA (cạnh huyền + góc nhọn )
=> KH = AC ( 2 cạnh tương ứng )
b. Theo Cm ý a. ta có : tam giác vuông BKH = tam giác vuông BCA
=> BA = BH ( 2 cạnh tương ứng ) (*)
Xét tam giác vuông BEH và tam giác vuông BEA có:
+ BA = BH ( theo * )
+ Cạnh BE chung
=> Tam giác vuông BEH = tam giác vuông BEA
=> góc ABE = góc HBE ( 2 góc tương ứng )
c.tự làm nhé :)
c. Theo Cm ý b. ta có Tam giác vuông BEH = tam giác vuông BEA
=> EA = EH ( 2 cạnh tương ứng ) (**)
Xét tam giác vuông AEK và tam giác vuông HEC có :
+ EA = EH ( theo ** )
+ góc AEK = góc HEC ( đối đỉnh )
=> tam giác vuông AEK = tam giác vuông HEC ( cạnh góc vuông + góc nhọn )
=> EK = EC ( 2 cạnh tương ứng ) (***)
Xét tam giác AEK có góc A là góc vuông
=> góc A là góc lớn nhất trong tam giác
Mà EK đối diện với góc A
=> EK là cạnh lớn nhất trong tam giác AEK
=> EK > EA
Lại có : EK = EC ( theo *** )
=> EC > EA
=> AE < EC
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C H K I M
Bài làm
a) Xét tam giác ABC vuông ở A có:
Theo định lí Pytago có:
BC2 = AB2 + AC2
hay BC2 = 32 + 42
=> BC2 = 9 + 16
=> BC2 = 25
=> BC = 5 ( cm )
b) Mik k hiểu rõ phần câu hỏi lắm, chắc là CMR: Tam giác BHM = tam giác CKM ak?
Vì BH vuông góc với AM
CK vuông góc với AM
=> BH // CK
=> \(\widehat{BCK}=\widehat{HBC}\) ( hai góc so le trong )
Xét tam giác BHM và tam giác CKM có:
\(\widehat{BHM}=\widehat{CKM}\left(=90^0\right)\)
Góc nhọn: \(\widehat{BCK}=\widehat{HBC}\)( cmt )
Cạnh huyền BM = MC ( Do M là trung điểm BC )
=> Tam giác BHM = tam giác CKM ( cạnh huyền - góc nhọn )
c) Xét tam giác BHM vuông ở H có:
BM là cạnh huyền của tam giác BHM
=> BM > HM (1)
Xét tam giác HIM vuông ở I có:
HM là cạnh huyền của tam giác HIM
HM > HI (2)
Từ (1) và (2) => BM > HI
Mà BM < BC ( Do M là trung điểm BC )
=>HI < BC
Xét tam giác MKC vuông ở K có:
MC là cạnh huyền của tam giác MKC
=> MC > MK
Mà MC < BC ( Do M là trung điểm BC )
=> MK < BC
Bài làm
~ Mik lm nốt câu d nha ~
d) Xét tam giác BHM và tam giác CKM ( cmt )
=> BH = CK
Xét tam giác BKC có:
Theo bất đẳng thức của tam giác có:
BK + KC > BC
Mà BH = KC
=> BK + BH > BC
Vậy BK + BH > BC