Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Ta có:
\(MA^2+MC^2+MB^2+MD^2\ge\frac{\left(MA+MC\right)^2}{2}+\frac{\left(MB+MD\right)^2}{2}\ge\frac{AC^2}{2}+\frac{BD^2}{2}=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Tham khảo ở đây nè bạn:
Câu hỏi của Minh Thư - Toán lớp 8 | Học trực tuyến
![](https://rs.olm.vn/images/avt/0.png?1311)
CÁC BẠN GIÚP MÌNH VỚI MÌNH CHO CÁC BẠN MỘT TICK CÁC THÂY CÔ TRONG hOC24 TICK CHO BẠN NÀO NHANH TAY TRẢ LỜI NHẤT XIN CHÂN THÀNH CẢM ƠN
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)
Do đó: AMHN là hình chữ nhật
b: Xét tứ giác AMNE có
AM//NE
AM=NE
Do đó: AMNE là hình bình hành
c: Xét ΔAHD có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔAHD cân tại A
mà AM là đường cao
nên AM là tia phân giác của góc HAD(1)
Xét ΔAHE có
AN là đường cao
AN là đường trung tuyến
Do đó:ΔAHE cân tại A
mà AN là đường cao
nên AN là tia phân giác của góc HAE(2)
Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{MAH}+\widehat{NAH}\right)=2\cdot90^0=180^0\)
=>D,A,E thẳng hàng
mà AD=AE
nên A là trung điểm của DE
a)
ABCD là hình vuông có cạnh bằng 1![](http://tailieuhoctap.com/html/d395/images/Aspose.Words.9792386e-b9e8-44f7-bfe5-4cedd5598dbc.064.png)
M là điểm bất kỳ nằm trong hình vuông ABCD (H1)
Chứng minh tương tự:![](http://tailieuhoctap.com/html/d395/images/Aspose.Words.9792386e-b9e8-44f7-bfe5-4cedd5598dbc.067.png)
Do đó, suy ra: MA2 + MB2 + MC2 + MD2
1 + 1 = 2 (đpcm)
Đẳng thức xảy ra
M là giao điểm của hai đường chéo AC và BD
b)Kẽ MH
BC tại H (H2)
MH = NB
Từ (1) và (2) suy ra:
(3)
Hai tam giác ONB và NMC có:
Từ (1) và (4) suy ra:
NC2 = 2.OB2 (đpcm)