Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn thêm điều kiện m,n là số tự nhiên nhé!
Giải như sau :
Với n là số tự nhiên thì ta luôn có 2n là số chẵn.
Xét trong giả thiết thì các hạng tử có số mũ chẵn.
Vậy thì ta có : \(\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+...+\left(x_mp-y_mq\right)^{2n}\ge0\)
Kết hợp với giả thiết bài toán ta được \(\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+...+\left(x_mp-y_mq\right)^{2n}=0\)
\(\Leftrightarrow x_ip-y_iq=0\) (i = 1,2,...,m)
\(\Leftrightarrow x_ip=y_iq\Leftrightarrow\frac{x_i}{y_i}=\frac{q}{p}\)
Ta thay i = 1,2,...,m thì được : \(\frac{q}{p}=\frac{x_1}{y_1}=\frac{x_2}{y_2}=...=\frac{x_m}{y_m}=\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}\) (áp dụng tính chất dãy tỉ sô bằng nhau)
hay : \(\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Có vẻ như giữa (x2p - y2q)2n và (x3p - y3q)2n thiếu dấu + thì phải?
Ta có thể chứng minh như sau:
Với mọi n thuộc tập N*, ta có: k2n >= 0 với mọi k. (1)
-> (x1p - y1q)2n + ... + (xmp - ymq)2n luôn bằng 0
-> x1p - y1q = 0, x2p - y2q = 0, ... và xmp - ymq = 0 (2)
Giả sử điều cần chứng minh là đúng: (x1 + ... + xm) / (y1 + ... + ym) = q / p
-> p*(x1 + ... + xm) = q*(y1 + ... + ym)
-> x1p + ... + xmp = y1q + ... + ymq
-> (x1p - y1q) + ... (xmp - ymq) = 0 (3)
Theo (2), (3) luôn đúng -> Giả sử của ta là chính xác.
![](https://rs.olm.vn/images/avt/0.png?1311)
Kiến thức cơ bản :v
GT : \(\left(x_1a-y_1b\right)^{2n}+\left(x_2a-y_2b\right)^{2n}+\left(x_3a+y_3b\right)^{2n}+...+\left(x_ma-y_mb\right)^{2n}\le0\)
Có : \(\left(x_1a-y_1b\right)^{2n}+\left(x_2a-y_2b\right)^{2n}+\left(x_3a-y_3b\right)^{2n}+...+\left(x_ma-y_mb\right)^{2n}\ge0\)
\(\Rightarrow\)\(x_1a-y_1b=x_2a-y_2b=x_3a-y_3b=...=x_ma-y_mb=0\)
\(\Rightarrow\)\(x_1a=y_1b\)\(;\)\(x_2a=y_2b\)\(;\)\(x_3a=y_3b\)\(;\)\(...\)\(;\)\(x_ma=y_mb\)
\(\Rightarrow\)\(\frac{x_1}{y_2}=\frac{x_2}{y_2}=\frac{x_3}{y_3}=...=\frac{x_m}{y_m}=\frac{b}{a}\) \(\left(1\right)\)
Tính chất dãy tỉ số bằng nhau :
\(\frac{x_1}{y_1}=\frac{x_2}{y_2}=\frac{x_3}{y_3}=...=\frac{x_m}{y_m}=\frac{x_1+x_2+x_3+...+x_m}{y_1+y_2+y_3+...+y_m}=\frac{b}{a}\) ( đpcm )
![](https://rs.olm.vn/images/avt/0.png?1311)
\(n\in N\)(n>0)\(\Rightarrow\left(x_1a-y_1b\right)^{2n}\ge0,...,\left(x_ma-y_mb\right)^{2n}\ge0\)\(\Rightarrow VT\ge0\)
Dấu "=" xra khi \(x_1a-y_1b=0;...;x_ma-y_mb=0\left(a,b>0\right)\Rightarrow\frac{x_1}{y_1}=\frac{x_2}{y_2}=...=\frac{x_m}{y_m}=\frac{b}{a}\)
Theo t/c dãy tỉ số bằng nhau:
\(\Rightarrow\frac{b}{a}=\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}\)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
xét A \(\ge\) 0;có A\(\le\) 0=>A=0
từ đó tính được x;y thế vào B làm tiếp
Ta có: \(\left(x_1p-y_1q\right)^{2n}\ge0;\left(x_2p-y_2q\right)^{2n}\ge0;....;\left(x_mp+y_mq\right)^{2n}\ge0\)
=>(x1p-y1q)2n+(x2p-y2q)2n+...+(xmp-ymq)2n > hoặc = 0
Mà theo đề (x1p-y1q)2n+(x2p-y2q)2n+...+(xmp-ymq)2n < hoặc = 0
nên: (x1p-y1q)2n+(x2p-y2q)2n+...+(xmp-ymq)2n=0
=>x1p-y1q=0 =>x1=y1q/p
x2p-y2q=0 =>x2=y2q/p
........
xmp-ymq=0 =>xm=ymq/p
Suy ra: \(\frac{x_1+x_2+...+x_n}{y_1+y_2+....+y_n}=\frac{\frac{y_1q}{p}+\frac{y_2q}{p}+...+\frac{y_mq}{p}}{y_1+y_2+...+y_m}=\frac{\frac{q}{p}\left(y_1+y_2+....+y_m\right)}{y_1+y_2+...+y_m}=\frac{q}{p}\)
=>điều phải chứng minh
ah quen!thieu dieu kien Cho......\(\le0\)voi moi m,n thuocN*