Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, bạn tự vẽ nhé
b, Gọi ptđt (D1) có dạng y = ax + b
(D1) // (D) \(\hept{\begin{cases}a=\frac{1}{2}\\b\ne2\end{cases}}\)
=> (D1) : y = x/2 + b
Hoành độ giao điểm tm pt
\(\frac{x^2}{4}=\frac{x}{2}+b\Leftrightarrow x^2=2x+4b\Leftrightarrow x^2-2x-4b=0\)
\(\Delta'=1-\left(-4b\right)=1+4b\)
Để (D1) tiếp xúc (P) hay pt có nghiệm kép
\(1+4b=0\Leftrightarrow b=-\frac{1}{4}\)
suy ra \(\left(D1\right):y=\frac{x}{2}-\frac{1}{4}\)
toạ độ M là tương giao của cái nào bạn ?
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1)
a) Xét phương trình hoành độ giao điểm: \(2x+3+m=3x+5-m\)
\(\Leftrightarrow x=3+m+m-5\Leftrightarrow x=2m-2\)
Để giao điểm của hai đường thẳng trên nằm trên trục tung thì \(2m-2=0\Leftrightarrow m=1\)
b) Do (d) // (d') nên (d) có phương trình \(y=-\frac{1}{2}x+b\)
Do (d) cắt trục hoành tại điểm có hoành độ x = 10 nên điểm (10;0) thuộc đường thẳng (d0.
Vậy thì \(0=-\frac{1}{2}.10+b\Leftrightarrow b=5\)
Vậy phương trình đường thẳng (d) là \(y=-\frac{1}{2}x+5\)
Bài 2)
a) Để (d1)//(d2) thì \(4m=3m+1\Leftrightarrow m=1\)
b) Để (d1)//(d2) thì \(4m\ne3m+1\Leftrightarrow m\ne1\)
Khi m = 2, ta có phương trình hoành độ giao điểm là:
\(8x-7=7x-7\Leftrightarrow x=0\)
Với \(x=0,y=-7\)
Vậy tọa độ giao điểm của (d1) và (d2) là (0; -7)
a/ Phương trình hoành độ giao điểm:
\(\frac{1}{4}x^2-\frac{1}{2}x-2=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=4\\x=-2\Rightarrow y=1\end{matrix}\right.\)
b/ Gọi phương trình (d1) có dạng \(y=\frac{1}{2}x+b\)
Do (d1) tiếp xúc (P) nên pt hoành độ giao điểm (d1) và (P) có nghiệm kép
\(\Rightarrow\frac{1}{4}x^2-\frac{1}{2}x-b=0\) có nghiệm kép
\(\Leftrightarrow\Delta=\frac{1}{4}+b=0\Rightarrow b=-\frac{1}{4}\)
\(\Rightarrow x_M=1\Rightarrow M\left(1;\frac{1}{4}\right)\)
c/ Tọa độ N: \(N\left(-1;\frac{1}{4}\right)\)
Gọi pt (d2) có dạng \(y=cx+d\Rightarrow-c+d=\frac{1}{4}\Rightarrow d=c+\frac{1}{4}\)
\(\Rightarrow y=cx+c+\frac{1}{4}\)
Phương trình hoành độ giao điểm (d2) và (P):
\(\frac{1}{4}x^2-cx-c-\frac{1}{4}=0\Leftrightarrow x^2-4cx-4c-1=0\)
\(\Delta'=4c^2+4c+1=0\Rightarrow c=-\frac{1}{2}\)