K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2018

a, Chứng minh ∆CMB = ∆DNC =>  N C E ^ = C D N ^

Từ đó chứng minh được  C E N ^ = 90 0

b, Ta có A,D,E,M cùng thuộc được tròn đường kính DM

c, Gọi I là trung điểm của CD, chứng minh AI song song với MC

=> ∆ADE cân tại A

=> B,E,D cùng thuộc (A;AB)

a: ta có: \(MA=MB=\frac{AB}{2}\)

\(BN=NC=\frac{BC}{2}\)

mà BA=BC

nên MA=MB=BN=NC

Xét ΔNCD vuông tại C và ΔMBC vuông tại B có

NC=MB

CD=BC

Do đó: ΔNCD=ΔMBC

=>\(\hat{CND}=\hat{BMC}\)

\(\hat{BMC}+\hat{BCM}=90^0\) (ΔBCM vuông tại B)

nên \(\hat{CND}+\hat{BCM}=90^0\)

=>CM⊥DN tại E

=>\(\hat{CEN}=90^0\)

b: ta có: \(\hat{MAD}=90^0\)

=>A nằm trên đường tròn đường kính MD(1)

Ta có: \(\hat{MED}=90^0\)

=>E nằm trên đường tròn đường kính MD(2)

Từ (1),(2) suy ra A,E,M,D cùng thuộc một đường tròn

21 tháng 8

Tai sao lai tu goc ma suy ra dc nam tren hay khong vay???


a: ta có: \(MA=MB=\frac{AB}{2}\)

\(BN=NC=\frac{BC}{2}\)

mà BA=BC

nên MA=MB=BN=NC

Xét ΔNCD vuông tại C và ΔMBC vuông tại B có

NC=MB

CD=BC

Do đó: ΔNCD=ΔMBC

=>\(\hat{CND}=\hat{BMC}\)

\(\hat{BMC}+\hat{BCM}=90^0\) (ΔBCM vuông tại B)

nên \(\hat{CND}+\hat{BCM}=90^0\)

=>CM⊥DN tại E

=>\(\hat{CEN}=90^0\)

b: ta có: \(\hat{MAD}=90^0\)

=>A nằm trên đường tròn đường kính MD(1)

Ta có: \(\hat{MED}=90^0\)

=>E nằm trên đường tròn đường kính MD(2)

Từ (1),(2) suy ra A,E,M,D cùng thuộc một đường tròn

14 tháng 5 2017

Câu a) b) mình làm được rồi giúp mình câu c) d) thui nhanh nhanh chút nha mifnk sắp đi học rùi

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

B1: Cho hàm số y=(m-1)x+2  . tìm điểm mà đồ thị hàm số đi qua với mọi m?B2: Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Trên tia đối của tia AM lấy điểm N sao cho MA=MN.BN cắt đường tròn ở C. Gọi E là giao điểm của AC và BM.a) cm: tam giác ABC vuông tại C.b) cm NE vuông góc ABc) gọi F là điểm đôis xứng với E qua M, cm NF là tiếp tuyến của (O)B3: Cho nửa đường tròn (O)đường...
Đọc tiếp

B1: Cho hàm số y=(m-1)x+2  . tìm điểm mà đồ thị hàm số đi qua với mọi m?

B2: Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Trên tia đối của tia AM lấy điểm N sao cho MA=MN.BN cắt đường tròn ở C. Gọi E là giao điểm của AC và BM.

a) cm: tam giác ABC vuông tại C.

b) cm NE vuông góc AB

c) gọi F là điểm đôis xứng với E qua M, cm NF là tiếp tuyến của (O)

B3: Cho nửa đường tròn (O)đường kính AB=2R. Gọi Ax, By là các ti8a vuông góc với AB tại A và B(Ax,By và nửa đường tròn cùng thuộc 1 nửa mặt phẳng bờ AB). Qua điểm C thuộc nửa đường tròn( C khác A, B). kẻ đường thẳng d là tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự ở M và N.

a)cm :MN=AM+BN

b) cm \(\Delta\)MON vuông

 c) AC giao với MO tại I, CB giao với ON tại K, cm tứ giác CIOK là hình chữ nhật

d) gọi D là giao điểm của BC  với Ax, cm MD=MA

0
2 tháng 6 2017

? khó quá bn ơi !

mk ko bít

ko bít ko bít ko bít

chuk may mắn

29 tháng 12 2017

ABCOMNHE

a) Do M, N thuộc đường tròn đường kính BC nên \(\widehat{BMC}=\widehat{BNC}=90^o\Rightarrow BN\perp AC;CM\perp AB\)

Xét tam giác ABC có BN và CM là hai đường cao nên H là trực tâm, vậy thì AH cũng là đường cao của tam giác hay \(AH\perp BC\)

b) Do AMH và ANH là các tam giác vuông có chung cạnh huyền AH nên AMHN là tứ giác nội tiếp đường tròng tâm E, bán kính EH. Vậy thì \(\widehat{MHE}=\widehat{MNA}\) (Hai góc nội tiếp cùng chắn cung AM)

Lại có EM = EH nên \(\widehat{MHE}=\widehat{HME}\)

Vậy nên \(\widehat{HME}=\widehat{MNA}\)   (1)

Lại có do OM = OC nên \(\widehat{OMC}=\widehat{OCM}\) mà \(\widehat{OCM}=\widehat{BNM}\)  (Hai góc nội tiếp cùng chắn cung BM)

Vậy nên \(\widehat{OMC}=\widehat{BNM}\)     (2)

Từ (1) và (2) suy ra \(\widehat{HME}+\widehat{OMC}=\widehat{MNA}+\widehat{MNB}\Rightarrow\widehat{EMO}=\widehat{ANH}=90^o\)

Vậy ME là tiếp tuyến của đường tròn (O)

Xét tam giác MEO và NEO có: Cạnh EO chung, EM = EN, OM = ON 

\(\Rightarrow\Delta MEO=\Delta NEO\left(c-g-c\right)\)

\(\Rightarrow S_{MEO}=S_{NEO}\Rightarrow S_{MEO}=\frac{1}{2}S_{MENO}\)

\(\Rightarrow\frac{1}{2}ME.MO=\frac{1}{4}.MN.EO\Rightarrow MN.OE=2ME.MO\)

c) Do tứ giác AMHN nội tiếp nên \(\widehat{MAH}=\widehat{MNH}\)

Mà \(\widehat{MCB}=\widehat{MNH}\Rightarrow\widehat{MAH}=\widehat{MCB}\)

Vậy thì \(\Delta AMH\sim\Delta CMB\left(g-g\right)\Rightarrow\frac{CM}{AM}=\frac{CB}{AH}=1\)

Lại có xét tam giác vuông AMC, \(tan\widehat{BAC}=\frac{MC}{AM}=1.\)

23 tháng 12 2018

Mỉnh ko hiểu đề cho lắm. Tam giác ABC vuông tại A => AB vuông góc AC, vậy đề còn cho "Từ A vẽ đường vuông góc với AB và AC tại D và E" là sao??? Hơi vô lý.