Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) BD, CE là các đường trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)DA = DC; EA =EB
\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)ED // BC; ED = 1/2 BC
\(\Delta GBC\)có MG = MB; NG = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)
\(\Rightarrow\)MN // BC; MN = 1/2 BC
suy ra: MN // ED; MN = ED
\(\Rightarrow\)tứ giác MNDE là hình bình hành
c) MN = ED = 1/2 BC
\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)+ \(\frac{BC}{2}\)= BC
![](https://rs.olm.vn/images/avt/0.png?1311)
a)ta có:
AB=DC mà AE=1/2 AB, KC= 1/2 DC
=>AE=KC
Xét tứ giác AECK, ta có:
AE//KC(AB//KC và AE thuộc AB và KC thuộc DC)
=>tứ giác AECK là hình bình hành.
b) chỗ DE vuông góc CE có đúng không vậy để mai mình làm tiếp
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Xét tam giác HCD cóHN=DN;HM=CM
=> MN là đường trung bình của tam giác HCD => MN//DC
=> DNMC là hình thang
b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD
Mà AB=1/2CD => AB =MN
Do MN//CD và AB//CD => AB//MN
Xét tứ giác ABMN có AB//MN; AB=MN
=> ABMN là hình bình hành
c.Ta có MN//CD mà CD vg AD
=> MN vg AD
Xét tam giác ADM có DH và MN là 2 đường cao của tam giác
Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM
=> AN là đường cao của tam giác ADM
=> AN vg DM
Do ABMN là hình bình hành nên AN//BM
=> BM vg DM => BMD =90*
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
a)
Theo bài ra ta có FC=BC2;EB=AB2FC=BC2;EB=AB2. Mà BC=ABBC=AB do ABCDABCD là hình vuông
⇒FC=EB⇒FC=EB
Xét tam giác vuông EBCEBC và FCDFCD có:
EB=FCEB=FC
BC=CDBC=CD (theo tính chất hình vuông)
⇒△EBC=△FCD⇒△EBC=△FCD (c.g.c)
⇒ECBˆ=FDCˆ⇒ECB^=FDC^ hay FCMˆ=MDCˆFCM^=MDC^
Do đó:
DMCˆ=1800−(MDCˆ+MCDˆ)=1800−(FCMˆ+MCDˆ)=1800−FCDˆ=1800−900=900DMC^=1800−(MDC^+MCD^)=1800−(FCM^+MCD^)=1800−FCD^=1800−900=900
⇒CE⊥DF⇒CE⊥DF
b) Gọi NN là trung điểm của DCDC. ANAN cắt DFDF tại KK
Ta thấy AE=AB2=AC2=NCAE=AB2=AC2=NC.
AB∥DCAB∥DC (tính chất hình vuông) nên AE∥NCAE∥NC
Tứ giác AECNAECN có 2 cạnh đối song song và bằng nhau nên AECNAECN là hình bình hành.
⇒AN∥EC⇒AN∥EC.
⇒KN∥MC⇒KN∥MC. Theo định lý Ta-let: DKKM=DNNC=1DKKM=DNNC=1
⇒DK=KM⇒DK=KM hay KK là trung điểm của DMDM
Mặt khác từ kết quả phần a ta cũng suy ra AK⊥DMAK⊥DM
Như vậy trong tam giác ADMADM thì AKAK vừa là đường trung tuyến vừa là đường cao nên ADMADM là tam giác cân tại AA, hay AD=AMAD=AM
Ta có đpcm.
a: Xét tứ giác AECK có
AE//CK
AE=CK
Do đó: AECK là hình bình hành
b: Xét ΔEBC vuông tại B và ΔFCD vuông tại C có
EB=FC
BC=CD
=>ΔEBC=ΔFCD
=>góc BEC=góc CFD
=>góc CFD+góc ECB=90 độ
=>DF vuông góc CE tại M
c: Xét ΔDMC có
K là trung điểm của DC
KN//MC
=>N là trung điểm của DM
=>ND=NM