K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên

4 tháng 9 2020
C D B A H N M
a) Kẻ CH vuông góc với AB ( H thuộc AB )
Ta có : \(BH=\frac{AB-CD}{2}=\frac{30-10}{2}=10\left(cm\right)\)
Ta lại có :
\(\cos\widehat{B}=\frac{BH}{BC}\)
\(\Rightarrow BC=\frac{10}{\cos60^o}\)
Vì cos 60o = \(\frac{1}{2}\)
\(\Rightarrow BC=10.2=20\left(cm\right)\)
b) Vì ABCD là hình thang cân
M , N lần lượt là trung điểm của AB , Cd
=>MN vuông góc với CD và AB
=> MN = CH
Theo định lí py-ta-go ta có : \(CH=\sqrt{BC^2-BH^2}=\sqrt{20^2-10^2}=10\sqrt{3}\left(cm\right)\)
=> MN = \(10\sqrt{3}\)
A B C D M N 2a H
a) Gọi H là giao điểm của AM và BN
\(\Delta ABMvà\Delta BCN\) có:
AB=BC(ABCD là hình vuông)
góc ABM=góc BCN=90o
BM=CN=1/2 cạnh hình vuông
=>\(\Delta ABM=\Delta BCN\left(c-g-c\right)\)
=> góc AMB= góc BNC
mà BNC+HBC=90o
=>AMB+HBC=900
=> góc BHM=900
=>\(AM\perp BN\)(đpcm)
b)tam giác ABM và tam giác ADN có:
AB=AD(ABCD là hình vuông )
góc ABM=góc ADN=90o
BM=DN=1/2 cạnh hình vuông
=> tam giác ABM= tam giác ADN(c.g.c)
=> AM=AN=\(\sqrt{AD^2+DN^2}=\sqrt{\left(2DN\right)^2+DN^2}=DN\sqrt{5}=a\sqrt{5}\)
tam giác ABH vuông tại B có BH vuông góc với AM
=> AH.AM=AB2
\(\Rightarrow AH=\dfrac{AB^2}{AM}=\dfrac{4a^2}{a\sqrt{5}}=\dfrac{4a}{\sqrt{5}}\)
=> cos MAN = \(\dfrac{AH}{AN}=\dfrac{4a}{\sqrt{5}}:a\sqrt{5}=\dfrac{4}{5}\)