Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Chỉ hướng dẫn câu đại thôi nhé
Theo đề bài thì ta có hai giả thuyết sau
\(\hept{\begin{cases}x_1+y_1=x_2+y_2=...=x_{10}+y_{10}=10\\x_1+x_2+...+x_{10}=y_1+y_2+...+y_{10}\end{cases}}\)
Theo đề bài thì
\(x^2_1+x^2_2+...+x^2_{10}=y_1^2+y^2_2+...+y^2_{10}\)
\(\Leftrightarrow\left(x^2_1-y^2_1\right)+\left(x^2_2-y^2_2\right)+...+\left(x^2_{10}-y^2_{10}\right)=0\)
\(\Leftrightarrow10\left(x_1-y_1\right)+10\left(x_2-y_2\right)+...+\left(x_{10}-y_{10}\right)=0\)
\(\Leftrightarrow x_1+x_2+...+x_{10}-y_1-y_2-...-y_{10}=0\)ĐPCM
![](https://rs.olm.vn/images/avt/0.png?1311)
A B M C O O 1 2 O I E D N
a) Có ^AO1O2 = ^AO1M/2 = 1/2.Sđ(AM của (O1) = ^ABM = ^ABC. Tương tự ^AO2O1 = ^ACB
Suy ra \(\Delta\)AO1O2 ~ \(\Delta\)ABC (g.g) (đpcm).
b) Từ câu a ta có \(\Delta\)AO1O2 ~ \(\Delta\)ABC. Hai tam giác này có đường trung tuyến tương ứng AO,AI
Khi đó \(\Delta\)AOO1 ~ \(\Delta\)AIB (c.g.c) => \(\frac{AO}{AO_1}=\frac{AI}{AB}\). Đồng thời ^OAI = ^O1AB
=> \(\Delta\)AOI ~ \(\Delta\)AO1B (c.g.c). Mà \(\Delta\)AO1B cân tại O1 nên \(\Delta\)AOI cân tại O (đpcm).
c) Xét đường tròn (O1): ^DAM nội tiếp, ^DAM = 900 => DM là đường kính của (O1)
=> ^DBM = 900 => DB vuông góc với BC. Tương tự EC vuông góc với BC
Do vậy BD // MN // CE. Bằng hệ quả ĐL Thales, dễ suy ra \(\frac{ND}{NE}=\frac{MB}{MC}\)(1)
Áp dụng ĐL đường phân giác trong tam giác ta có \(\frac{MB}{MC}=\frac{AB}{AC}\)(2)
Từ (1) và (2) suy ra \(\frac{ND}{NE}=\frac{AB}{AC}\)=> ND.AC = NE.AB (đpcm).
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Lấy điểm X trên tia đối của tia BC sao cho BX=DE, suy ra tam giác ABX bằng tam giác ADE (cạnh huyền, cạnh góc vuông). Do đó AX=AE. Xét tam giác vuông XAF, áp dụng hệ thức liên hệ giữa cạnh góc vuông và đường cao ta có \(\frac{1}{AX^2}+\frac{1}{AF^2}=\frac{1}{AB^2}\to\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{AB^2}\) không đổi.
b. Kẻ EH vuông góc với KF. Ta có \(\sin EKF\cdot\cos EFK+\sin EFK\cdot\cos EKF=\frac{EH\cdot FH}{KE\cdot EF}+\frac{KH\cdot EH}{KE\cdot EF}=\frac{EH\left(FH+KH\right)}{KE\cdot EF}=\frac{EH\cdot KF}{KE\cdot EF}\)
\(\frac{2S_{KEF}}{KE\cdot EF}=\frac{KA\cdot EF}{KE\cdot EF}=\frac{KA}{KE}=\sin\angle AEK=\cos\angle AKE.\) (ĐPCM)
cho hình thoi ABCD có canh .Qua C vẽ đường thẳng M cắt các tia đối của các tia BA và DA theo thứ tự E và F.CMR tổng 1/AE +1/AF không đổi với mọi vị trí nói trên cảu đường thẳng m
BÁC NÀO BK CHỈ MK VS
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C O O D P G E H F O 1 2 3 K
Gọi DA cắt (O3( tại G khác A, GP cắt FD tại K. Giao điểm thứ hai của BD và (BAF) là H.
Ta có ^APG = ^AEG = ^AFK => Tứ giác APKF nội tiếp => K thuộc (BAF)
Dễ thấy: ^AFK = ^AED = ^ABH = ^AFH => (AK(BAF) = (AH(BAF) => ^KBA = ^HFE.
Chứng minh được \(\Delta\)FDE ~ \(\Delta\)ADB (g.g) suy ra \(\frac{AB}{FE}=\frac{AD}{DF}=\frac{BD}{DF}=\frac{BK}{FH}\)
Từ đây có \(\Delta\)AKB ~ \(\Delta\)EHF (c.g.c) cho nên ^BAK = ^FEH = ^BFK. Do ^AFK = ^AED nên ^AFB = ^DEH
Kết hợp với ^HDE = 1800 - ^BDE = 1800 - ^BAE = ^BAF dẫn đến \(\Delta\)DEH ~ \(\Delta\)AFB (g.g)
=> \(\frac{HE}{BF}=\frac{DE}{AF}\). Lại có \(\Delta\)DGE ~ \(\Delta\)ACF (g.g) => \(\frac{DE}{AF}=\frac{GE}{CF}\). Suy ra \(\frac{HE}{BF}=\frac{GE}{CF}\)(*)
Mặt khác ta có biến đổi góc ^GEH = ^GED - ^DEH = ^AFC - ^AFB = ^CFB. Từ đó kết hợp với (*) ta thu được:
\(\Delta\)EGH ~ \(\Delta\)FCB (c.g.c) => ^EGH = ^FCB. Mà ^EGD = ^ACF nên ^DGH = ^ACB.
Khi đó dễ dàng chỉ ra \(\Delta\)ABC ~ \(\Delta\)DGH (g.g) => \(\Delta\)DGH cân tại D => ^DGH = ^DHG
Ta thấy ^DGP = ^BAP = ^DGH => Tứ giác PGHD nội tiếp. Từ đây ^DPK = ^DHG = ^DGH = ^DPH
Do đó PD là phân giác ^KPH. Chú ý ^APG = ^AEG = ^AFD = ^ABH = ^APH => PA là phân giác ^HPG
Mà ^KPH và ^HPG kề bù nên PA vuông góc PD hay ^APD = 900 (đpcm).