K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2016

a) Hai tam giác OAM và OCP có: OA = OC 

                                                    ˆOAM=ˆOCP ( AB song song CD )

                                                    AM = CP

Suy ra 2 tam giác này bằng nhau => ˆMOA=ˆCOP => M, O, P thẳng hàng.

Tương tự suy ra N, O, Q thẳng hàng

b) Do BM = BN, BA = BC nên theo định lí Thales đảo suy ra MN song song AC + PQ song song AC => MN song song PQ. 

Tương tự MQ song song NP. Mà ta lại có AC vuông góc với BD => MNPQ là hình chữ nhật.

a: Ta có: AM+MB=AB

CP+PD=CD

AQ+QD=AD

CN+NB=CB

mà AM=CP=AQ=CN và AB=CD=AD=CB

nên MB=PD=QD=NB

Xét tứ giác BMDP có

BM//DP

BM=DP

Do đó: BMDP là hình bình hành

b: ABCD là hình thoi

=>AC⊥BD tại O và O là trung điểm chung của AC và BD

Xét tứ giác BNDQ có

BN//DQ

BN=DQ

Do đó: BNDQ là hình bình hành

=>BD cắt NQ tại trung điểm của mỗi đường

mà O là trung điểm của BD

nên O là trung điểm của NQ

=>N,O,Q thẳng hàng

c: AMCP là hình bình hành

=>AC cắt MP tại trung điểm của mỗi đường

mà O là trung điểm của AC
nên O là trung điểm của MP

ΔAMQ cân tại A

=>\(\hat{AMQ}=\frac{180^0-\hat{MAQ}}{2}=\frac{180^0-\hat{BAD}}{2}\left(1\right)\)

ΔABD cân tại A

=>\(\hat{ABD}=\frac{180^0-\hat{BAD}}{2}\left(2\right)\)

Từ (1),(2) suy ra \(\hat{AMQ}=\hat{ABD}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên MQ//BD

Ta có: DQ=DP

=>ΔDQP cân tại D

=>\(\hat{DQP}=\frac{180^0-\hat{QDP}}{2}=\frac{180^0-\hat{ADC}}{2}\left(3\right)\)

ΔDAC cân tại D

=>\(\hat{DAC}=\frac{180^0-\hat{ADC}}{2}\left(4\right)\)

Từ (3),(4) suy ra \(\hat{DQP}=\hat{DAC}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên PQ//AC
mà AC⊥BD

nên PQ⊥BD

Ta có: PQ⊥BD

QM//BD

DO đó: QM⊥QP

Xét tứ giác MNPQ có

O là trung điểm chung của MP và NQ

=>MNPQ là hình bình hành

Hình bình hành MNPQ có QM⊥QP

nên MNPQ là hình chữ nhật


8 tháng 8 2017

a) Chứng minh được MBPD và BNDQ đều là hình bình hành Þ ĐPCM.

b) Áp dụng định lý Talet đảo cho DABD và DBAC tacos MQ//BD và MN//AC.

Mà ABCD là hình thoi nên AC ^ BD Þ MQ ^ MN

MNPQ là hình chữ nhật vì có các góc ở đỉnh là góc vuông

a:

ABCD là hình thoi

=>AC vuông góc BD tại trung điểm của mỗi đường

=>AC vuông góc BD tại O và O là trung điểm chung của AC và BD

AM+MB=AB

PC+PD=DC

mà AM=PC và AB=DC

nên MB=PD

Xét tứ giác BMDP có

BM//DP

BM=DP

Do đó: BMDP là hình bình hành

b: Xét tứ giác AQCN có

AQ//CN

AQ=CN

Do đó: AQCN là hình bình hành

=>AC cắt QN tại trung điểm của mỗi đường

=>O là trung điểm của QN

=>N,O,Q thẳng hàng

c: Xét ΔABD có AM/AB=AQ/AD

nên MQ//BD

=>MQ vuông góc AC

Xét ΔABC có

BM/BA=BN/BC

nên MN//AC

=>MQ vuông góc MN

BMDP là hình bình hành

=>BD cắt MP tại trung điểm của mỗi đường

=>O là trung điểm của MP

Xét tứ giác MNPQ có

O là trung điểm chung của MP và NQ

góc NMQ=90 độ

Do đó: MNPQ là hình chữ nhật

1 tháng 9 2023

Mình cảm ơn ạ

13 tháng 9 2019

Chúc bạn học tốt!

Tham khảo:

Cho hình thoi ABCD,Trên các cạnh AB BC CD DA lấy theo thứ tự M N P Q,AM = CN = CP = QA,O là giao điểm 2 đường chéo hình thoi ABCD,Chứng minh ba điểm M O P thẳng hàng,Chứng minh ba điểm N O Q thẳng hàng,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

22 tháng 12 2019

c) PQ ⊥ BD (gt). Xét các tam giác vuông POB và QOD có:

∠POB = ∠QOD∠ (đối đỉnh),

OB = OD

∠PBO = ∠QDO (so le trong).

Do đó ΔPOB = ΔQOD (g.c.g) ⇒ BP = DQ

Lại có BP // DQ nên tứ giác PBQD là hình bình hành

Mặt khác PBQD có hai đường chéo vuông góc nên là hình thoi.