\(\dfrac{1}{BH^2}=\dfr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2021

Giả sử \(BH\perp AD\)

Gọi  \(O=AC\cap BD\)

Có \(S_{ABCD}=\dfrac{1}{2}AC.BD=BH.AD\)

\(\Leftrightarrow\left\{{}\begin{matrix}AC.BD=2S_{ABCD}\\BH=\dfrac{S_{ABCD}}{AD}\end{matrix}\right.\)

Có \(\dfrac{1}{AC^2}+\dfrac{1}{BD^2}=\dfrac{AC^2+BD^2}{AC^2.BD^2}=\dfrac{4\left(OA^2+OD^2\right)}{\left(2S_{ABCD}\right)^2}\)\(=\dfrac{4AD^2}{4S_{ABCD}}=\dfrac{1}{BH^2}\) 

Vậy \(\dfrac{1}{BH^2}=\dfrac{1}{AC^2}+\dfrac{1}{BD^2}\)

7 tháng 11 2017

Ta có: BC = \(\dfrac{BC^2}{BC}\)

Áp dụng định lý Py-ta-go cho tam giác ABC vuông tại A:

Ta được: BC\(^2\)=AB\(^2\)+AC\(^2\) (1)

mà BH + HC = BC (2)

Từ (1) và (2), ta có: \(\dfrac{BC^2}{BC}\)=\(\dfrac{AB^2+AC^2}{BH+HC}\)\(\dfrac{AB^2}{BH}=\dfrac{AC^2}{HC}\)

\(\dfrac{AB^2}{AC^2}\)=\(\dfrac{BH}{HC}\) (đpcm)

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Bài 1:

a)

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2-AC^2}=\sqrt{10^2-8^2}=6\) (cm)

\(S_{ABC}=\frac{AC.CB}{2}=\frac{AB.CK}{2}\Rightarrow CK=\frac{AC.CB}{AB}=\frac{8.6}{10}=4,8\) (cm)

Áp dụng định lý Pitago:

\(BK=\sqrt{CB^2-CK^2}=\sqrt{6^2-4,8^2}=3,6\) (cm)

\(AK=BA-BK=10-3,6=6,4\) (cm)

b)

\(KH\perp BC, KI\perp AC\Rightarrow \widehat{KHC}=\widehat{KIC}=90^0=\widehat{HCI}\)

Tứ giác $KHCI$ có 3 góc vuông nên là hình chữ nhật.

c)

Xét tam giác $CHK$ và $CKB$ có:

Góc $C$ chung

\(\widehat{CHK}=\widehat{CKB}=90^0\)

\(\Rightarrow \triangle CHK\sim \triangle CKB(g.g)\)

\(\Rightarrow \frac{CH}{CK}=\frac{CK}{CB}\Rightarrow CH.CB=CK^2(1)\)

Hoàn toàn tương tự: \(\triangle CKI\sim \triangle CAK(g.g)\)

\(\Rightarrow \frac{CK}{CA}=\frac{CI}{CK}\Rightarrow CA.CI=CK^2(2)\)

Từ \((1);(2)\Rightarrow CH.CB=CA.CI\) (đpcm)

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Bài 1:

d)

\(HK\parallel AC\Rightarrow \frac{BH}{BK}=\frac{BC}{BA}\Rightarrow BH=\frac{BK.BC}{AB}\) (định lý Ta-let)

Tương tự: \(\frac{AI}{AK}=\frac{AC}{AB}\Rightarrow AI=\frac{AK.AC}{AB}\)

\(\Rightarrow \frac{AI}{BH}=\frac{AK}{BK}.\frac{AC}{BC}\)

Xét tam giác $BKC$ và $BCA$ có:

\(\left\{\begin{matrix} \text{góc B chung}\\ \widehat{BKC}=\widehat{BCA}=90^0\end{matrix}\right.\Rightarrow \triangle BKC\sim \triangle BCA(g.g)\)

\(\Rightarrow \frac{BK}{BC}=\frac{BC}{BA}\Rightarrow BK=\frac{BC^2}{BA}\) (cái này là công thức hệ thức lượng quen thuộc, mình chỉ chứng minh lại thôi nhé)

Tương tự: \(AK=\frac{AC^2}{AB}\)

\(\Rightarrow \frac{AK}{BK}=\frac{AC^2}{BC^2}(4)\)

Từ \((3);(4)\Rightarrow \frac{AI}{BH}=\frac{AC^2}{BC^2}.\frac{AC}{BC}=\left(\frac{AC}{BC}\right)^3\) (đpcm)

e)

Áp dụng những công thức thu từ phần d:

\(AB.BH.AI=AB.\frac{BK.BC}{BA}.\frac{AK.AC}{AB}=\frac{AK.BK.BC.AC}{AB}\)

\(AK=\frac{AC^2}{AB}; BK=\frac{BC^2}{AB}\Rightarrow AB.BH.AI=\left(\frac{AC.BC}{AB}\right)^3\)

\(=\left(\frac{2S_{ABC}}{AB}\right)^3=CK^3\) (đpcm)

f)

Ta có: \(S_{KHI}=\frac{KH.KI}{2}=\frac{KM.HI}{2}\)

\(\Rightarrow KM=\frac{KH.KI}{HI}\Rightarrow KM^2=\frac{KH^2.KI^2}{HI^2}\)

\(\Rightarrow \frac{1}{KM^2}=\frac{HI^2}{KH^2.KI^2}=\frac{KH^2+KI^2}{KH^2.KI^2}=\frac{1}{KI^2}+\frac{1}{KH^2}\) (Pitago)

Mà theo phần b ta cm được $KHCI$ là hcn nên \(KI=CH; KH=CI\)

\(\Rightarrow \frac{1}{KM^2}=\frac{1}{CH^2}+\frac{1}{CI^2}\) (đpcm)

31 tháng 5 2017

Hệ thức lượng trong tam giác vuông

3 tháng 8 2017

3)kẻ BD vuông góc voi71 BC, D thuộc AC

tam giác ABC cân tại A có AH là Đường cao

suy ra AH là trung tuyến

Suy ra BH=HC

(BD vuông góc BC

AH vuông góc BC

suy ra BD song song AH

suy ra BD/AH = BC/CH = 2

suyra 1/BD = 1/2AH suy ra 1BD^2 =1/4AH^2

tam giác BDC vuông tại B có BK là đường cao

suy ra 1/BK^2 =1/BD^2 +1/BC^2

suy ra 1/BK^2 =1/4AH^2 +1/BC^2

7 tháng 11 2017

1) \(1+tan^2\alpha=1+\dfrac{sin^2\alpha}{cos^2\alpha}=\dfrac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}=\dfrac{1}{cos^2\alpha}\) (đpcm).