![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng Pi-ta-go vào tam giác vuông IAB, ta có: A B 2 = A I 2 + I B 2
⇒ I B 2 = A B 2 - A I 2 = 25 – 9 = 16
⇒ IB = 4(cm).
AC = 2AI = 2.3 = 6 (cm)
BD = 2IB = 2.4 = 8 (cm)
S A B C D = 1/2 AC.BD = 1/2 .6.8 = 24 ( c m 2 )
![](https://rs.olm.vn/images/avt/0.png?1311)
VÌ ABCD là hình thoi nên O là trung điểm của AC và BD
Suy ra: AC = 2OA = 2.3 = 6cm
Và BD = 2.OB = 2.5= 10cm
Diện tích hình thoi là:
Chọn đáp án A
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D I 3cm 5cm
Áp dụng Pi-ta-go vào tam giác vuông IAB, ta có: \(AB^2=AI^2+IB^2\)
\(\Rightarrow IB^2=AB^2-AI^2=25-9=16cm\)
\(\Rightarrow IB=4\left(cm\right)\)
\(AC=2AI=2.3=6\left(cm\right)\)
\(BD=2IB=2.4=8\left(cm\right)\)
\(S_{ABCD}=\frac{1}{2}AC.BD=\frac{1}{2}.6.8=24\left(cm^2\right)\)
Chúc bạn học tốt !!!
![](https://rs.olm.vn/images/avt/0.png?1311)
Do ABCD là hình thoi nên hai đường chéo vuông góc với nhau và cắt nhau tại trung điểm của mỗi đường
Diện tích tam giác ABC là
Suy ra: BO.AC = 32
Diện tích hình thoi ABCD là:
Chọn đáp án B
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo tính chất của hình thoi ta có: O là trung điểm của AC và BD.
Suy ra:
Áp dụng định lí Pytago vào tam giác OAB có:
A B 2 = O A 2 + O B 2 = 6 2 + 10 2 = 136
⇒ A B = 2 34 c m
Chọn đáp án B
![](https://rs.olm.vn/images/avt/0.png?1311)
Có 4 tam giác bằng nhau và diện tích cũng bằng nhau đó là \(AOB,BOC,COD,DOA\).
\(S_{COD}=\frac{5.10}{2}=25\left(cm^2\right)\)
Vậy \(S_{ABCD}=100cm^2\)
A B C D H O
![](https://rs.olm.vn/images/avt/0.png?1311)
\(MNPQ\) là hình thoi, \(MP\) ∩ \(NQ\) \(=\) {\({Q}\)}
\(\rightarrow MP\) ⊥ \(PQ\) tại \(O\)
\(\rightarrow OP=OM,OQ=ON\)
Áp dụng định lý Pytago vào \(△ MON\) vuông tại \(O\)
\(\rightarrow MN^2=MO^2+ON^2\)
\(\Leftrightarrow 10^2=3^2+ON^2\)
\(\Leftrightarrow 100=9+ON^2\)
\(\Leftrightarrow ON^2=91\)
\(\Leftrightarrow ON=\sqrt{91}\)
\(\rightarrow QN=2\sqrt{91}\)
Lại có : \(MP=6\) cm
\(\rightarrow S_{MNPQ}=\dfrac{1}{2}.2\sqrt{91}.6=6\sqrt{91}\) (\(cm^2)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì ABCD là hình thoi có O là giao điểm của hai đường chéo nên O là trung điểm của AC và BD.
Suy ra
Diện tích hình thoi ABCD là:
Diện tích tam giác vuông OAB là:
Chọn đáp án A