Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Kéo dài AD và BC, chúng cắt nhau tại M, dựng đường cao DH.
⇒ tam giác ABM đều.⇒AB=AM=4,5⇒DC=AM-AD=4,5-2=2,5Xét tam giác ADH vuông tại D có ADH=30AH=1/2AD=1/2.2=1Mặt khác ta có:DH²=AD²-AH²(theo định lý PITAGO)⇒DH²=4-1=3⇒DH=√3⇒Sabcd=(DC+AB).DH/2=(2,5+4,5).√3/2=7√3/2![](https://rs.olm.vn/images/avt/0.png?1311)
Hạ \(DH\perp AB,CK\perp AB\).
Tam giác \(AHD\)vuông tại \(H\)có\(\widehat{ADH}=30^o\)nên \(AH=\frac{1}{2}AD=1\left(cm\right)\)
\(HD=\sqrt{AD^2-AH^2}=\sqrt{2^2-1^2}=\sqrt{3}\left(cm\right)\)
Tương tự \(BK=1\left(cm\right)\).
\(DC=HK=AB-AH-BK=2,5\left(cm\right)\)
\(S_{ABCD}=\frac{AB+CD}{2}.DH=\frac{4,5+2,5}{2}.\sqrt{3}=\frac{7\sqrt{3}}{2}\left(cm^2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
. a) HS tự chứng minh
b) Kẻ đường cao AH, BK,chứng minh được DH = CK
Ta được H D = C D − A B 2 = 3 c m
Þ AH = 4cm Þ SABCD = 20cm2
![](https://rs.olm.vn/images/avt/0.png?1311)
Hạ CH và DK vuông góc với AB
Ta có:
A K = B H = 1 2 A D = 1 c m
Từ đó: CD = 2,5cm
C H = 3 c m
S A B C D = A B + C D . C D 2 = 7 3 2 c m 2
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D E F
Bài làm:
Từ D,E kẻ DE,CF vuông góc với AB \(\left(E,F\in AB\right)\)
Xét trong Δ vuông ADE tại D có góc A bằng 60 độ
=> \(\widehat{ADE}=30^0\)
Vì tam giác ADE có: \(\hept{\begin{cases}\widehat{A}=60^0\\\widehat{ADE}=30^0\\\widehat{AED}=90^0\end{cases}}\) => \(AE=\frac{AD}{2}=\frac{2}{2}=1\left(cm\right)\)
Tương tự tính được: \(BF=1\left(cm\right)\)
=> \(FE=AB-AE-BF=4,5-2=2,5\left(cm\right)\)
Vì DC // FE và DE // FC nên theo t/c đoạn chắn
=> DC = FE = 2,5 (cm)
Áp dụng định lý Pytago ta được: \(DE^2=AD^2-AE^2=2^2-1^2=3\left(cm\right)\)
=> \(DE=\sqrt{3}\left(cm\right)\)
Diện tích hình thang cân ABCD là: \(\frac{\left(AB+CD\right).DE}{2}=\frac{7\sqrt{3}}{2}\left(cm^2\right)\)
Giải
Kẻ DH vuông góc với AB
\(\sin\widehat{A}=\frac{DH}{AD}\)
\(\Leftrightarrow\sin60^o=\frac{DH}{2}\Rightarrow DH=\sqrt{3}\)
\(\cos A=\frac{AH}{AD}\)
\(AH=\cos60^o.2\)
\(\Rightarrow DC=AB-1-1=4,5-2=2,5\)
\(S\)ABCD=\(\frac{1}{2}.\sqrt{3}.\left(4,5+2,5\right)\)
\(=\frac{7\sqrt{3}}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) DDBC vuông có B C D ^ = 2 B D C ^ nên A D C ^ = B C D ^ = 60 0 và D A B ^ = C B A ^ = 120 0
b) Tính được DC = 2.BC = 12cm, suy ra PABCD = 30cm.
Hạ đường cao BK, ta có BK = 3 3 c m .
Vậy SABCD = 27 3 c m 2