Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABD có
E là trung điểm của AD
I là trung điểm của AB
Do đó: EI là đường trung bình của ΔABD
Suy ra: EI//BD và \(EI=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBDC có
H là trung điểm của BC
K là trung điểm của CD
Do đó: HK là đường trung bình của ΔBDC
Suy ra: HK//BD và \(HK=\dfrac{BD}{2}\left(2\right)\)
Xét ΔABC có
I là trung điểm của AB
H là trung điểm của BC
Do đó: IH là đường trung bình của ΔBAC
Suy ra: \(IH=\dfrac{AC}{2}\)
mà AC=BD
nên \(IH=\dfrac{BD}{2}\)
hay IH=HK
Xét tứ giác IEKH có
EI//KH
EI=KH
Do đó: IEKH là hình bình hành
mà IH=HK
nên IEKH là hình thoi

a: Gọi O là giao điểm của AC và BD
ABCD là hình thoi
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Ta có: \(AM=MB=\frac{AB}{2}\)
\(CN=DN=\frac{CD}{2}\)
mà AB=CD
nên AM=MB=CN=DN
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
=>AN//CM và AN=CM(2)
Xét ΔBAC có
BO,CM là các đường trung tuyến
CM cắt BO tại K
Do đó: K là trọng tâm của ΔABC
=>\(CK=\frac23CM\) (1)
Xét ΔACD có
AN,DO là các đường trung tuyến
AN cắt DO tại H
Do đó: H là trọng tâm của ΔACD
=>\(AH=\frac23AN\) (3)
Từ (1),(2),(3) suy ra CK=AH
Xét tứ giác AHCK có
AH//CK
AH=CK
Do đó: AHCK là hình bình hành
b: AMCN là hình bình hành
=>AC cắt MN tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểm của MN
=>AC,BD,MN đồng quy tại O
a) Chứng minh tứ giác \(A K H C\) là hình thoi
- Gọi \(O\) là giao điểm hai đường chéo \(A C\) và \(B D\). Trong hình thoi, \(O\) là trung điểm của cả \(A C\) và \(B D\), đồng thời \(A C \bot B D\).
- Xét tam giác \(A B C\), có \(M\) là trung điểm của \(A B\), \(O\) là trung điểm của \(A C\). Suy ra:
\(O M \parallel B C \left(\right. đườ n g t r u n g b \overset{ˋ}{\imath} n h \left.\right) .\)
- Xét tam giác \(A C D\), có \(N\) là trung điểm của \(C D\), \(O\) là trung điểm của \(A C\). Suy ra:
\(O N \parallel A D .\)
- Mà \(A D \parallel B C\) (tính chất hình thoi), do đó:
\(O M \parallel O N .\)
Suy ra \(M N \parallel A C\).
- Xét tứ giác \(A K H C\):
- \(A , C\) nằm trên đường chéo \(A C\).
- \(H , K\) nằm trên đường chéo \(B D\).
- Ta có \(A C \bot B D\).
⇒ Hai đường chéo của tứ giác \(A K H C\) vuông góc nhau và cắt nhau tại trung điểm (chính là \(O\)).
Do đó \(A K H C\) là hình thoi.
b) Chứng minh \(A C , B D , M N\) đồng quy
- Từ trên, ta đã có \(M N \parallel A C\).
- \(A C\) và \(B D\) cắt nhau tại \(O\).
- Vì \(M N \parallel A C\), nên đường thẳng \(M N\) cắt \(B D\) tại đúng một điểm, gọi là \(P\).
- Dễ thấy \(P\) chính là giao điểm chung của \(B D\) và \(M N\). Do \(M N \parallel A C\), nên ba đường thẳng \(A C , B D , M N\) cùng đi qua một điểm:
\(A C \cap B D = O , M N \cap B D = P , m \overset{ˋ}{a} O \in M N .\)
⇒ \(A C , B D , M N\) đồng quy tại \(O\).
Kết luận:
a) Tứ giác \(A K H C\) là hình thoi.
b) Ba đường thẳng \(A C , B D , M N\) đồng quy tại giao điểm \(O\).
Tham Khảo bạn nhé

Xét ΔABC có
E là trung điểm của AB
N là trung điểm của AC
Do đó: EN là đường trung bình của ΔABC
Suy ra: EN//BC và \(EN=\dfrac{BC}{2}\left(1\right)\)
Xét ΔBDC có
M là trung điểm của BD
F là trung điểm của CD
Do đó: MF là đường trung bình của ΔBDC
Suy ra: MF//BC và \(MF=\dfrac{BC}{2}\left(2\right)\)
Xét ΔABD có
E là trung điểm của AB
M là trung điểm của BD
Do đó: EM là đường trung bình của ΔABD
Suy ra: \(EM=\dfrac{AD}{2}=\dfrac{BC}{2}\left(3\right)\)
Từ (1) và (2) suy ra EN//MF và EN=MF
Từ (1) và (3) suy ra EN=EM
Xét tứ giác ENFM có
EN//MF
EN=MF
Do đó: ENFM là hình bình hành
mà EN=EM
nên ENFM là hình thoi

Sử dụng đường trung bình, ta có: KN = 1/2 AB, NI = 1/2 CD , IM = 1/2 AB , MK = 1/2 CD
Mà AB = CD (gt)
\(\Rightarrow KN=NI=IM=MK\)
\(\Rightarrow KNIM\)là hình thoi
Do đó: MN là tia phân giác của \(\widehat{IMK}\)(tính chất hình thoi)
Chúc bạn học tốt.

Xin phép ad cho em tách ạ,nguyên 1 câu khá là dài,hihi

a) Hình thang cân ABCD, có:
AB // CD; AD = BC
Xét hình tam giác ACB, có:
I là trung điểm BC (gt)
Q là trung điểm AC (gt)
=> IQ là đường trung bình tam giác ACB
=> IQ // AB
mà AB // CD (cmt)
=> IQ // CD
Xét tam giác ACD, có:
Q là trung điểm AC 9gt)
P là trung điểm CD (gt)
=> QP là đường trung bình tam giác ACD
=> QP = 1/2 AD
mà AD = BC (I là trung điểm BC)
=> IB = IC = QP
Xét tứ giác QIPC, có:
QI // PC (cmt)
=> tứ giác QIPC là hình thang
có: QP = IC (cmt)
=> tứ giác QIPC là hình thang cân (đpcm)
b) Xét tam giác ABC, có:
QI là đường trung bình tam giác ABC (cmt)
=> tam giác CQI = 1/2 tam giác ABC
=> SQIC = 1/2 SABC
Cmtt: SCPQ = 1/2 SACD
mà mình thấy kì kì cái câu này theo mình là = 1/2 chứ sao = 1/4 (theo mình thôi nha)
c) Xét tam giác ABC, có:
M là trung điểm AB (gt)
Q là trung điểm AC (gt)
=> MQ là đường trung bình
=> MQ // BC
MQ = 1/2 BC
cmtt: MN // AD; MN = 1/2 AD
NP = 1/2; NP // BC
PQ // AD; QP = 1/2 AD
Xét tú giác MNPQ, có:
MQ // NP (cùng // BC)
MN // QP (cùng //AD)
=> MNPQ là hình bình hành
có: MQ = NP = 1/2 BC
=> MNPQ là hình thoi (đpcm)
p/s: có chỗ nào không hiểu thì inb hỏi nha ~
Xét ΔABD có
E là trung điểm của AD
I là trung điểm của AB
Do đó: EI là đường trung bình của ΔABD
Suy ra: EI//BD và \(EI=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBDC có
H là trung điểm của BC
K là trung điểm của CD
Do đó: HK là đường trung bình của ΔBDC
Suy ra: HK//BD và \(HK=\dfrac{BD}{2}\left(2\right)\)
Xét ΔABC có
I là trung điểm của AB
H là trung điểm của BC
Do đó: IH là đường trung bình của ΔBAC
Suy ra: \(IH=\dfrac{AC}{2}\)
mà AC=BD
nên \(IH=\dfrac{BD}{2}\)
hay IH=HK
Xét tứ giác IEKH có
EI//KH
EI=KH
Do đó: IEKH là hình bình hành
mà IH=HK
nên IEKH là hình thoi