K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOAB vuông tại O và ΔOCD vuông tại O có

góc OAB=góc OCD
=>ΔOAB đồng dạng với ΔOCD

b: Xét ΔABD vuông tại A và ΔDAC vuông tại D có 

góc ABD=góc DAC

=>ΔABD đồng dạng với ΔDAC

9 tháng 4 2019

tại sao từ ob/od=oa/oc có thể => do/db=co/ca??

2 tháng 8 2017
bạn ơi bạn làm đc bài này chưa cho mình lời giải với
19 tháng 6 2018

Chú ý :Δ là tam giác

a) Xét ΔAOD và ΔBAD có:

{Dˆ:chungAOˆD=DAˆB=90⇒ΔAOD≀ΔBAD(g.g)

b) Ta có: DAˆO=ABˆD=ABˆO(ΔAOD≀ΔBAD)

Và AOˆD=AOˆB=90 (2 đường chéo vuông góc tại O)

Do đó ΔAOD≀ΔBOA(g.g)

⇒ADAB=ODAO (1)

Lại có: {DAˆO:chungAOˆD=ADˆC=90⇒ΔADC≀ΔAOD(g.g)

⇒CDOD=ADAO⇔CDAD=ODAO (2)


 
Từ (1);(2)⇒ADAB=CDAD⇒AD2=AB⋅CD

c) Ta có: AB song song với DC (ABCD là hình thang)

⇒ABˆO=ODˆC(slt)

Và AOˆB=DOˆC(đ2)

Do đó ΔOCD≀ΔOAB(g.g)

⇒k=OCOA=CDAB=94

⇒SΔOCDSΔOAB=k2=942=8116

Vậy........................

Chúc bạn học tốt nhé !

28 tháng 4 2018

bạn tự vẽ hình nhé 

a) Xét \(\Delta ABD\)và \(\Delta BDC\)có \(\widehat{BAD}=\widehat{CBD}\left(=90\right);\widehat{ADB}=\widehat{BCD}\)(cùng phụ với \(\widehat{BDC}\)

                           \(\Rightarrow\Delta ABD\infty\Delta BDC\left(g.g\right)\)   

b) Áp dụng định lý pytago vào \(\Delta ABD\)có \(BD^2=AB^2+AD^2=16+9=25\Rightarrow BD=5\)              

từ \(\Delta ABD\infty\Delta BDC\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow DC=\frac{BD^2}{AB}=\frac{25}{4}\)

a: Xét ΔAHD vuông tại H và ΔBAD vuông tại A có

góc D chung

=>ΔAHD đồng dạng với ΔBAD

b; Xét ΔDEA vuông tại D và ΔADB vuông tại A có

góc DEA=góc ADB

=>ΔDEA đồng dạng với ΔADB

=>DE/AD=AD/AB

=>AD^2=DE*AB

c: AD^2=DE*AB

=>DE=3^2/4=2,25cm