Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
11.
\(SA\perp\left(ABCD\right)\Rightarrow\) AC là hình chiếu vuông góc của SC lên (ABCD)
\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD)
\(\Rightarrow\widehat{SCA}=\varphi\)
\(AC=BD=\sqrt{AB^2+AD^2}=a\sqrt{13}\)
\(tan\varphi=\frac{SA}{AC}=\frac{\sqrt{13}}{13}\)
12.
Hai vecto \(\overrightarrow{AB}\) và \(\overrightarrow{EF}\) song song cùng chiều
\(\Rightarrow\left(\overrightarrow{AB};\overrightarrow{EG}\right)=\left(\overrightarrow{EF};\overrightarrow{EG}\right)=\widehat{GEF}=45^0\)
8.
Qua O có 1 và chỉ 1 mặt phẳng vuông góc \(\Delta\)
9.
Gọi O là tâm tam giác BCD
\(\Rightarrow AO\perp\left(BCD\right)\Rightarrow AO\perp CD\)
Mà \(CD\perp BO\) (trung tuyến đồng thời là đường cao)
\(\Rightarrow CD\perp\left(ABO\right)\Rightarrow CD\perp AB\)
\(\Rightarrow\overrightarrow{AB}.\overrightarrow{CD}=0\)
10.
\(AB\perp AD\Rightarrow\widehat{BAD}=90^0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\overrightarrow{u}^2=\left(\overrightarrow{a}-\overrightarrow{b}\right)^2=a^2+b^2-2\overrightarrow{a}.\overrightarrow{b}=2a^2-2a^2.cos60^0=a^2\)
\(\Rightarrow\left|\overrightarrow{u}\right|=a\)
\(\overrightarrow{a}.\overrightarrow{u}=\overrightarrow{a}\left(\overrightarrow{a}-\overrightarrow{b}\right)=a^2-\overrightarrow{a}.\overrightarrow{b}=a^2-a^2.cos60^0=\frac{a^2}{2}\)
\(\Rightarrow cos\left(\overrightarrow{a};\overrightarrow{u}\right)=\frac{\overrightarrow{a}.\overrightarrow{u}}{\left|\overrightarrow{a}\right|.\left|\overrightarrow{u}\right|}=\frac{a^2}{2a^2}=\frac{1}{2}\Rightarrow\left(\overrightarrow{a};\overrightarrow{u}\right)=60^0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Phương trình dạng tổng quát của \(d_1\): \(x+3y-7=0\)
Phương trình dạng tổng quát của \(d_2\): \(x-3y+2=0\)
a/ Gọi M là 1 điểm bất kì thuộc \(d_1\Rightarrow x_M+3y_M-7=0\) (1)
Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{a}\Rightarrow\left\{{}\begin{matrix}x_M=x_{M'}-1\\y_M=y_{M'}-1\end{matrix}\right.\)
Thay vào (1): \(x_{M'}-1+3\left(y_{M'}-1\right)-7=0\)
\(\Leftrightarrow x_{M'}+3y_{M'}-11=0\)
Vậy ảnh của \(d_1\) có pt: \(x+3y-11=0\)
Gọi \(M_2\) là 1 điểm bất kì thuộc \(d_2\Rightarrow x_{M_2}-3y_{M_2}+2=0\)
Gọi M'' là ảnh của \(M_2\) qua phép tịnh tiến \(\overrightarrow{a}\) \(\Rightarrow\left\{{}\begin{matrix}x_{M2}=x_{M''}-1\\y_{M2}=y_{M''}-1\end{matrix}\right.\)
\(\Rightarrow x_{M''}-1-3\left(y_{M''}-1\right)+2=0\Leftrightarrow x_{M''}-3y_{M''}+4=0\)
Ảnh của d2 là: \(x-3y+4=0\)
b/ \(\Rightarrow I\left(5;-6\right)\)
Gọi M là 1 điểm bất kì thuộc d \(\Rightarrow4x_M-2y_M+3=0\) (1)
Gọi M' là ảnh của M qua phép đối xứng tâm I
\(\Rightarrow\left\{{}\begin{matrix}x_M=10-x_{M'}\\y_M=-12-y_{M'}\end{matrix}\right.\)
Thế vào (1): \(4\left(10-x_{M'}\right)-2\left(-12-y_{M'}\right)+3=0\)
\(\Rightarrow4x_{M'}-2y_{M'}-67=0\)
Hay ảnh của d qua phép đối xứng tâm I có pt: \(4x-2y+67=0\)
- Tương tự, gọi \(M_1\) là 1 điểm bất kì thuộc \(d_1\Rightarrow x_{M1}+3y_{M1}-7=0\)
\(M_1'\) là ảnh của M qua phép đối xứng tâm I \(\Rightarrow\left\{{}\begin{matrix}x_{M1}=10-x_{M_1'}\\y_{M1}=-12-y_{M_1'}\end{matrix}\right.\)
\(\Rightarrow10-x_{M_1'}+3\left(-12-y_{M_1'}\right)-7=0\)
\(\Leftrightarrow x_{M_1'}+3y_{M_1'}+33=0\)
Ảnh của d1 là: \(x+3y+33=0\)
Ảnh của d2 bạn tự làm nốt tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
1/ \(\overrightarrow{AB}^2-\overrightarrow{AD}^2=\overrightarrow{BC}^2-\overrightarrow{CD}^2\)
\(\Leftrightarrow\left(\overrightarrow{AB}+\overrightarrow{AD}\right)\left(\overrightarrow{AB}-\overrightarrow{AD}\right)=\left(\overrightarrow{BC}+\overrightarrow{CD}\right)\left(\overrightarrow{BC}-\overrightarrow{CD}\right)\)
\(\Leftrightarrow\left(\overrightarrow{AB}+\overrightarrow{AD}\right).\overrightarrow{DB}=\overrightarrow{BD}\left(\overrightarrow{BC}-\overrightarrow{CD}\right)=\overrightarrow{DB}\left(\overrightarrow{CB}+\overrightarrow{CD}\right)\)
Gọi M là trung điểm BD
\(\Rightarrow2\overrightarrow{AM}.\overrightarrow{DB}=2\overrightarrow{CM}.\overrightarrow{DB}\)
\(\Leftrightarrow\overrightarrow{DB}.\left(\overrightarrow{AM}-\overrightarrow{CM}\right)=0\)
\(\Leftrightarrow\overrightarrow{BD}.\overrightarrow{AC}=0\)
2/ \(A=\left|\overrightarrow{a}-\overrightarrow{b}\right|\Rightarrow A^2=\overrightarrow{a}^2-2\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}^2\)
\(=a^2+b^2-2ab.cos\left(\overrightarrow{a};\overrightarrow{b}\right)=4^2+5^2-2.4.5.cos120^0=61\)
\(\Rightarrow A=\sqrt{61}\)
b/ \(B=\left|2\overrightarrow{a}+\overrightarrow{b}\right|\Rightarrow B^2=4a^2+b^2+4\overrightarrow{a}.\overrightarrow{b}\)
\(=4a^2+b^2+4ab.cos120^0=49\)
\(\Rightarrow B=7\)
3/ \(\left|\overrightarrow{x}\right|=\left|\overrightarrow{a}-2\overrightarrow{b}\right|\Rightarrow\left|\overrightarrow{x}\right|^2=a^2+4b^2-4\overrightarrow{a}.\overrightarrow{b}=12\)
\(\Rightarrow\left|\overrightarrow{x}\right|=2\sqrt{3}\)
\(\left|\overrightarrow{y}\right|^2=a^2+b^2-2\overrightarrow{a}.\overrightarrow{b}=5\Rightarrow\left|\overrightarrow{y}\right|=\sqrt{5}\)
\(\overrightarrow{x}.\overrightarrow{y}=\left(\overrightarrow{a}-2\overrightarrow{b}\right)\left(\overrightarrow{a}-\overrightarrow{b}\right)=a^2+2b^2-3\overrightarrow{a}.\overrightarrow{b}=4\)
\(\Rightarrow cos\alpha=\frac{\overrightarrow{x}.\overrightarrow{y}}{\left|\overrightarrow{x}\right|.\left|\overrightarrow{y}\right|}=\frac{4}{2\sqrt{15}}=\frac{2\sqrt{15}}{15}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
16.
Đặt cạnh của đáy là x
\(DM=\sqrt{AD^2+AM^2}=\sqrt{x^2+\left(\frac{x}{2}\right)^2}=\frac{x\sqrt{5}}{2}\)
\(CM=\sqrt{BC^2+BM^2}=\sqrt{x^2+\left(\frac{x}{2}\right)^2}=\frac{x\sqrt{5}}{2}\)
\(\Rightarrow DM=CM\Rightarrow\Delta_vSMD=\Delta_vSMC\)
\(\Rightarrow SC=SD=2a\sqrt{5}\)
Mà \(SM\perp\left(ABCD\right)\Rightarrow\widehat{SCM}\) là góc giữa SC và (ABCD) \(\Rightarrow\widehat{SCM}=60^0\)
\(\Rightarrow\left\{{}\begin{matrix}CM=SC.cos60^0=a\sqrt{5}\\SM=SC.sin60^0=a\sqrt{15}\end{matrix}\right.\) \(\Rightarrow AB=x=\frac{2CM}{\sqrt{5}}=2a\)
Gọi N là trung điểm CD \(\Rightarrow CD\perp\left(SMN\right)\)
\(AM//CD\Rightarrow AM//\left(SCD\right)\Rightarrow d\left(A;\left(SCD\right)\right)=d\left(M;\left(SCD\right)\right)\)
Từ M kẻ \(MM\perp SN\Rightarrow MH\perp\left(SCD\right)\Rightarrow MH=d\left(H;\left(SCD\right)\right)\)
\(MN=AB=2a\)
\(\frac{1}{MH^2}=\frac{1}{SM^2}+\frac{1}{MN^2}\Rightarrow MH=\frac{SM.MN}{\sqrt{SM^2+MN^2}}=\frac{2a\sqrt{15}}{\sqrt{19}}\)
14.
Do \(\widehat{C'BC}\) là góc giữa (ABCD) và (ABC') nên \(\widehat{C'BC}=60^0\)
\(\Rightarrow CC'=BC.tan60^0=a\sqrt{3}\)
15.
Gọi H là trung điểm BC \(\Rightarrow OH\perp BC\)
Chóp tứ giác đều \(\Rightarrow SO\perp\left(ABCD\right)\Rightarrow SO\perp BC\)
\(\Rightarrow BC\perp\left(SOH\right)\)
Từ O kẻ \(OK\perp SH\Rightarrow OK\perp\left(SBC\right)\Rightarrow OK=d\left(O;\left(SBC\right)\right)\)
\(OH=\frac{1}{2}AB=\frac{a}{2}\) ; \(AC=a\sqrt{2}\Rightarrow OA=\frac{a\sqrt{2}}{2}\)
\(SO=\sqrt{SA^2-OA^2}=\frac{a\sqrt{2}}{2}\)
\(\frac{1}{OK^2}=\frac{1}{SO^2}+\frac{1}{OH^2}\Rightarrow OK=\frac{SO.OH}{\sqrt{SO^2+OH^2}}=\frac{a\sqrt{6}}{6}\)