Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bn tự vẽ hình nha!
A,
Ta có ABCD là Hcn
-> o là trung điêm của AC và BD
-> OA=OB=OC=OD
ta có OC=OD
-> tam giác ODC cân tại O
mà có Om là đg trung tuyến ( m là trung điêm DC-gt)
-> Om là đg cao
-> góc OMD = 90 độ
Ta có
O là trung điểm AC( cmt)
M là trung điểm CD(gt)
-> Om là đg trung bình tam giác ABC
-> OM song song AD; Om = 1/2 AD
Ta có OM song song Ad( cmt)
-> OMDA là hình thang
mà có góc OMD= 90 độ ( cmt)
-> OMDA là hình thang vuông( đpcm)
B,
Xét tứ giác ANOD có
NM song song AD( cmt- do Om song song AD)
An song song DO(gt- do AN song song DB)
-> ANoD là hbh ( đpcm)
Ok xong rùi☺
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét tứ giác OBMC ta có
2 đường chéo BC và OM cắt nhau tại I
I là trung điểm BC (gt)
I là trung điểm OM ( M là điểm đối xứng của O qua I)
-> tứ giác OBMC là hbh
cmtt tứ giác ODNC là hbh
ta có
BM // OC ( OBMC là hbh)
DN // OC (ODNC là hbh)
-.> BM//CN
ta có
BM // OC ( OBMC là hbh)
DN // OC (ODNC là hbh)
-.> BM//CN // OC
ta có
BM = OC ( OBMC là hbh)
DN = OC (ODNC là hbh)
-.> BM = ON
Xét tứ giác BMND ta có
BM // ON (cmt)
BM = ON (cmt)
-> tứ giác BMND là hbh
b) giả sử BMND là hcn
ta có
MB vuông góc BD ( BNMD là hcn)
BM // OC ( OBMC là hbh)
-> BD vuông góc OC tại O
Vậy AC vuông góc BD thì BMND là hcn
c) ta có
BD // CM ( OB // CM ; O thuộc BD)
BD // CN ( OD //CN . O thuộc BD)
-> CM trùng CN
-> C,N,M thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét tứ giác BOCM có
I là trung điểm của BC
I là trung điểm của OM
Do đó: BOCM là hình bình hành
Suy ra: BM//CO; BM//CO
Xét tứ giác DOCN có
K là trung điểm của DC
K là trung điểm của ON
Do đó: DOCN là hình bình hành
Suy ra: OC//DN; OC=DN
Xét tứ giác BDNM có
BM//DN
BM=DN
Do đó: BDNM là hình bình hành
c: Ta có: BDNM là hình bình hành
nên MN//BD
mà CN//BD
và MN,CN có điểm chung là N
nên M,N,C thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình:
Giải:
a) Ta có:
\(\left\{{}\begin{matrix}BH=HC\\MH=HO\end{matrix}\right.\)
Nên tứ giác BMCO là hình bình hành
\(\Rightarrow\left\{{}\begin{matrix}BM//OC\\BM=OC\end{matrix}\right.\left(1\right)\)
Tương tự, tứ giác OCND là hình bình hành
\(\Rightarrow\left\{{}\begin{matrix}DN//OC\\DN=OC\end{matrix}\right.\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\left\{{}\begin{matrix}BM//DN\\BM=OC=DN\end{matrix}\right.\)
Suy ra tứ giác BMND là hình bình hành
b) Để hình bình hành BMND trở thành hình chũ nhật thì BM⊥BD
Đồng thời BM//AC
Nên AC⊥BD
c) Vì BMCO là hình bình hành nên MC//BD (3)
Và BMND là hình bình hành nên MN//BD (4)
Từ (3) và (4), suy ra M,N,C thẳng hàng (theo tiên đề Ơ-clit)
Vậy ...