Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Theo giả thiết, S.ABCD là hình chóp đều và đáy ABCD là hình vuông nên SO ⊥ (ABCD) ( tính chất hình chóp đều)
Đáy ABCD là hình vuông cạnh a nên
=> Góc giữa hai mặt phẳng (MBD) và (ABCD) là 45 o
![](https://rs.olm.vn/images/avt/0.png?1311)
s B A D C O M
Hình chiếu vuông góc của SA lên (ABCD) là AO nên góc giữa SA và (ABCD) là \(\widehat{SAO}\)
Xét \(\Delta SAO\left(\perp O\right)\) ta có : \(SA=\frac{a\sqrt{5}}{2};AO=\frac{1}{2}AC=\frac{1}{2}a\sqrt{2}\)
\(\cos\widehat{SAO}=\frac{AO}{SA}=\frac{\frac{a\sqrt{2}}{2}}{\frac{a\sqrt{5}}{2}}=\frac{\sqrt{10}}{5}\)
c. Xét \(\Delta SOC\) có : \(\begin{cases}SO\perp BD\\OC\perp BD\end{cases}\) nên \(\left(SOC\right)\perp BD\) mà \(OM\subset\left(SOC\right)\Rightarrow OM\perp BD\)
xét : \(\left(MBD\right)\cap\left(ABCD\right)=BD\)
Trong (MBD) có \(OM\perp BD\)
Trong (ABCD) có \(OC\perp BD\)
Vậy góc giữa (MBD) và (ABCD) là \(\widehat{MOC}\)
Ta có : \(\Delta SAC\) đồng dạng với \(\Delta MOC\) (vì \(CM=\frac{1}{2}CS;CO=\frac{1}{2}CA\))nên \(\widehat{MOC}=\widehat{SAC}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Do S.ABCD là chóp đều \(\Rightarrow BD\perp\left(SAC\right)\)
Mà BD là giao tuyến (MBD) và (ABCD)
\(\Rightarrow\widehat{MOC}\) là góc giữa (MBD) và (ABCD)
\(OC=\dfrac{AC}{2}=\dfrac{a\sqrt{2}}{2}\) ; \(MC=OM=\dfrac{1}{2}SC=\dfrac{a}{2}\)
Áp dụng định lý hàm cosin:
\(cos\widehat{MOC}=\dfrac{OM^2+OC^2-CM^2}{2OM.OC}=\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow\widehat{MOC}=45^0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)
\(\Rightarrow\widehat{BSC}\) là góc giữa SC và (SAB)
\(tan\widehat{BSC}=\dfrac{BC}{SB}=\dfrac{\sqrt{10}}{5}\Rightarrow SB=\dfrac{a\sqrt{10}}{2}\)
\(\Rightarrow SA=\sqrt{SB^2-AB^2}=\dfrac{a\sqrt{6}}{2}\)
\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SOA}\) là góc giữa SO và (ABCD)
\(AO=\dfrac{AC}{2}=\dfrac{a\sqrt{2}}{2}\)
\(tan\widehat{SOA}=\dfrac{SA}{AO}=\sqrt{3}\Rightarrow\widehat{SOA}=60^0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
tham khảo:
a) AB//CD nên góc giữa SC và AB là góc giữa SC và CD: \(\widehat{SCD}\)
cos\(\widehat{SCD}\)=\(\dfrac{\left(2a\right)^2+a^2-\left(2a\right)^2}{2.2a.a}=\dfrac{1}{4}\)
Suy ra \(\widehat{SCD}=75^0\)
b) Kẻ SO⊥(ABCD). Do các cạnh bên của hình chóp bằng nhau nên O là tâm của hình vuông ABCD.
Ta có: AO⊥OB;AC=\(\sqrt{2}.\sqrt{2}\).a=2a;AO=BO=\(\dfrac{1}{2}\).2a=a
Hình chiếu vuông góc của tam giác SAB là tam giác OAB có diện tích là \(\dfrac{1}{2}\).a.a=\(\dfrac{1}{2}.a^2\)
a/ Đề sai
b/ Gọi H là trung điểm OC \(\Rightarrow\) MH là đường trung bình tam giác SOC
\(\Rightarrow MH//SO\Rightarrow MH\perp\left(ABCD\right)\)
Mà \(\left\{{}\begin{matrix}\left(SAC\right)\perp\left(ABCD\right)\\\left(SAC\right)\perp\left(MBD\right)\end{matrix}\right.\) \(\Rightarrow\widehat{MOH}\) là góc giữa (MBD) và (ABCD)
\(AC=a\sqrt{2}\Rightarrow OC=\frac{a\sqrt{2}}{2}\Rightarrow OH=\frac{a\sqrt{2}}{4}\)
\(OM=\frac{1}{2}SC=\frac{a\sqrt{5}}{4}\)
\(\Rightarrow cos\widehat{MOH}=\frac{OH}{OM}=\sqrt{\frac{2}{5}}\Rightarrow\widehat{MOH}\approx50^046'\)
c/ Gọi N là trung điểm AB \(\Rightarrow AB\perp\left(SON\right)\Rightarrow\widehat{SNO}\) là góc giữa (SAB) và (ABCD)
\(ON=\frac{1}{2}BC=\frac{a}{2}\) ; \(SO=\sqrt{SC^2-OC^2}=\frac{a\sqrt{3}}{2}\)
\(tan\widehat{SNO}=\frac{SO}{ON}=\sqrt{3}\Rightarrow\widehat{SNO}=60^0\)