Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình chóp tam giác đều nên là chiều cao của mặt bên xuất phát từ đỉnh chính là trung đoạn
Sxq=1/2*10*3*12=5*36=180cm2
![](https://rs.olm.vn/images/avt/0.png?1311)
Kẻ AO kéo dài cắt BC tại I
Ta có: AI ⊥ BC (tính chất tam giác đều)
BI = IC = 1/2 BC
Áp dụng định lí pi-ta-go vào tam giác vuông AIB,ta có:
A B 2 = B I 2 + A I 2
Suy ra: A I 2 = A B 2 - B I 2 = 12 2 - 6 2 =108
AI = 108 cm
Vì tam giác ABC đều nên O là trọng tâm của tam giác ABC
Ta có: OI = 1/3.AI = 1/3. 108 cm
Áp dụng định lí pi-ta-go vào tam giác vuông SOI ta có:
S I 2 = S O 2 + O I 2 = 8 + 1/9 .108 = 76
SI = 76 cm
Vậy S x q = Pd= [(12.3):2]. 76 =18 76 cm
![](https://rs.olm.vn/images/avt/0.png?1311)
`Answer:`
Gọi `H` là trung điểm của `CD`
\(\Rightarrow SH\perp CD\)
\(OH=\frac{1}{2}AD=\frac{1}{2}.10=5cm\)
Ta có: \(SO=12cm\)
\(\Rightarrow SH=\sqrt{SO^2+OH^2}=\sqrt{5^2+12^2}=\sqrt{169}=13cm\)
\(\Rightarrow S_{\Delta SCD}=\frac{1}{2}.SH.CD=\frac{1}{2}.13.10=65cm^2\)
\(\Rightarrow S_{xungquanh}=S_{\Delta SCD}.4=65.4=260cm^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn tự vẽ hình nha
a, Gọi \(O=BD\cap AC\)
K là trung điểm của CD
\(\Rightarrow OK=\dfrac{1}{2}AD=\dfrac{1}{2}CD=5\)
b, \(S_{xq}=\left(AB+BC\right).SK\)
\(=\left(10+10\right).13\)
\(=260\left(cm^2\right)\)
c, \(V_{S_{ABCD}}=\dfrac{1}{3}.SO.SB.SC\)
\(=\dfrac{1}{3}.12.10.10\)
\(=400\left(cm^3\right)\)
-Chúc bạn học tốt-
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: AC2 = AB2 + BC2 (Pytago) = 32 + 32 = 18(cm)
Lại có: SH2 = SC2 - HC2 (Pytago)
b) Gọi K là trung điểm của BC
Ta có: SK2 = SH2 + HK2 (Pytago)
Lời giải:
Xét tam giác $SAB$ có $SA=SB=10$, $AB=12$
Kẻ $SH\perp AB$ thì $H$ là trung điểm của $AB$.
$\Rightarrow AH=6$ (cm)
Theo định lý Pitago:
$SH=\sqrt{SA^2-AH^2}=\sqrt{10^2-6^2}=8$ (cm)
$S_{SAB}=\frac{SH.AB}{2}=\frac{8.12}{2}=48$ (cm vuông)
$S_{xq}=3S_{SAB}=3.48=144$ (cm vuông)