Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đáp án A
Đặt a> 0 cạnh hình vuông là Dễ thấy
Gọi O là tâm của đáy. Vẽ AH ⊥ SC tại, H, AH cắt SO tại I thì A I O ^ = φ
Qua I vẽ đường thẳng song song DB cắt SD, SB theo thứ tự tại K, L. Thiết diện chính là tứ giác
ALHK và tứ giác này có hai đường chéo AH ⊥ KL Suy ra
Ta có:
Theo giả thiết
Giải được
Suy ra φ = a r c sin 33 + 1 8

Đáp án A
Ta có: B là hình chiếu của B lên (ABCD)
A là hình chiếu của S lên (ABCD)
Suy ra góc tạo bởi (ABCD) là góc φ = S B A ^ .

Chọn D.
Gọi M là trung điểm của BC, suy ra AM ⊥ BC.
Ta có
Do đó
Tam giác ABC đều cạnh a, suy ra trung tuyến AM = a 3 2
Tam giác vuông SAM, có

Đáp án C
Giao tuyến giữa (SAB) và (CSD) là đường thằng d qua S và song song AB, CD. Gọi I, J theo thứ tự là trung điểm AB, CD
Suy ra SI, SJ cùng vuông góc với d tại S.
Áp dụng định lý cosin trong tam giác ISJ:

Gọi giao điểm của BO và AC là J; giao điểm của CO và AB là I.
Kẻ AK vuông góc CC’.
Vì đường thẳng CC’ vuông góc mp(ABK ) nên BK vuông góc CC’.
Đáp án C

Chọn A
Gọi H là trung điểm AB
nên hình chiếu của SD trên (ABCD) là HD
Tam giác SAB đều cạnh a nên SH = a 3 2
Tam giác vuông SHD

Lời giải:
\(\varphi=(AB,CD')=(AB, BA')=\widehat{ABA'}=\frac{1}{2}\widehat{ABB'}=\frac{1}{2}.120^0=60^0\)
Đáp án B.
Đáp án A
Gọi H là tâm của tam giác đều ABC => SH ⊥ (ABC)
(SA;(ABC))