![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ (1) (2) và (3) suy ra ba điểm F, G, H thuộc giao tuyến của hai mặt phẳng (MNP) và (ABCD).
Do đó ba điểm F, G, H thẳng hàng và G nằm giữa F và H.
Chọn C.
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình câu c là tui vẽ riêng ra cho dễ nhìn thôi, còn hình vẽ trình bày vô bài lấy hình chung ở câu a và b nhó :v
![](https://rs.olm.vn/images/avt/0.png?1311)
S A B C D O M N P H K
a/
Xét tg SAD có
SM=DM; SN=AN => MN là đường trung bình của tg SAD
=> MN//AD
Mà AD//BC (cạnh đối hbh)
=> MN//BC mà \(BC\in\left(SBC\right)\) => MN//(SBC)
C/m tương tự ta cũng có NP//(SCD)
b/
Ta có
NP//(SCD) (cmt) (1)
Xét tg SBD có
SP=BP (gt)
OB=OD (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
=> PO là đường trung bình của tg SBD
=> PO//SD mà \(SD\in\left(SCD\right)\) => PO//(SCD) (2)
Từ (1) và (2) => (ONP)//(SCD)
C/m tương tự ta cũng có (OMN)//(SBC)
c/
Trong (ABCD) , qua O dựng đường thẳng // AD cắt AB và CD lần lượt tại H và K Ta có
MN//AD (cmt)
=> KH//MN
\(O\in\left(OMN\right);O\in KH\)
\(\Rightarrow KH\in\left(OMN\right)\) mà \(H\in AB;K\in CD\)
=>K; H là giao của (OMN) với CD và AB
d/
Ta có
KH//AD
AB//CD => AH//DK
=> AHKD là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
=> AD=HK
Ta có
MN là đường trung bình của tg SAD (cmt)
\(\Rightarrow MN=\dfrac{AD}{2}\) mà AD=HK (cmt)
\(\Rightarrow MN=\dfrac{HK}{2}\Rightarrow\dfrac{MN}{HK}=\dfrac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề bài sai òi :v Vẽ hình ra đi bạn.
Giờ tui gán MN vô (SBD) thì giao tuyến của (SBD) và (SBC) là SB. Vậy nên SB phải song song với MN. Nhưng ko :) Song song chết liền hà :)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Một kinh nghiệm khi đề bài cho dữ kiện về trọng tâm thì vẽ hết 3 đường trung tuyến ra, sẽ rất dễ nhìn
Ta có SG là đường trung tuyến của tam giác SCD, kéo dài SG cắt CD ở K=> \(MG\subset\left(SAK\right)\)
\(\left\{{}\begin{matrix}A\in SA\subset\left(SAK\right)\\A\in AB\subset\left(ABCD\right)\end{matrix}\right.\Rightarrow A=\left(SAK\right)\cap\left(ABCD\right)\)
\(\left\{{}\begin{matrix}K\in SK\subset\left(SAK\right)\\K\in CD\subset\left(ABCD\right)\end{matrix}\right.\Rightarrow K=\left(SAK\right)\cap\left(ABCD\right)\)
\(\Rightarrow\left(SAK\right)\cap\left(ABCD\right)=AK\)
\(AK\cap MG=\left\{I\right\}\Rightarrow MG\cap\left(ABCD\right)=\left\{I\right\}\)
b/ \(BN\subset\left(SBD\right)\)
\(\left(SAG\right)\equiv\left(SAK\right)\)
\(AK\cap BD=\left\{H\right\}\Rightarrow H=\left(SBD\right)\cap\left(SAK\right)\)
\(\Rightarrow\left(SAG\right)\cap\left(SAK\right)=SH\)
\(SH\cap BN=\left\{O\right\}\Rightarrow BN\cap\left(SAG\right)=\left\{O\right\}\)
a/ Một kinh nghiệm khi đề bài cho dữ kiện về trọng tâm thì vẽ hết 3 đường trung tuyến ra, sẽ rất dễ nhìn
Ta có SG là đường trung tuyến của tam giác SCD, kéo dài SG cắt CD ở K=> \(MG\subset\left(SAK\right)\)
\(\left\{{}\begin{matrix}A\in SA\subset\left(SAK\right)\\A\in AB\subset\left(ABCD\right)\end{matrix}\right.\Rightarrow A=\left(SAK\right)\cap\left(ABCD\right)\)
\(\left\{{}\begin{matrix}K\in SK\subset\left(SAK\right)\\K\in CD\subset\left(ABCD\right)\end{matrix}\right.\Rightarrow K=\left(SAK\right)\cap\left(ABCD\right)\)
\(\Rightarrow\left(SAK\right)\cap\left(ABCD\right)=AK\)
\(AK\cap MG=\left\{I\right\}\Rightarrow MG\cap\left(ABCD\right)=\left\{I\right\}\)
b/ \(BN\subset\left(SBD\right)\)
\(\left(SAG\right)\equiv\left(SAK\right)\)
\(AK\cap BD=\left\{H\right\}\Rightarrow H=\left(SBD\right)\cap\left(SAK\right)\)
\(\Rightarrow\left(SAG\right)\cap\left(SAK\right)=SH\)
\(SH\cap BN=\left\{O\right\}\Rightarrow BN\cap\left(SAG\right)=\left\{O\right\}\)