cho hình chóp S.ABCD, đáy ABCD là hình bình hành, tâm O. Gọi M là trung điểm SC

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2023

a: loading...

b: \(O\in AC\subset\left(SAC\right)\)

\(M\in SC\subset\left(SAC\right)\)

Do đó: \(OM\subset\left(SAC\right)\)

c: Xét ΔSAC có

O,M lần lượt là trung điểm của CA,CS

=>OM là đường trung bình của ΔSAC

=>OM//SA và \(OM=\dfrac{1}{2}SA\)

OM//SA

SA\(\subset\left(SAD\right)\)

OM không thuộc mp(SAD)

Do đó: OM//(SAD)

d: SA//MO

\(MO\subset\left(MBD\right)\)

SA không thuộc mp(MBD)

Do đó: SA//(MBD)

e: Xét (OMD) và (SAD) có

\(D\in\left(OMD\right)\cap\left(SAD\right)\)

OM//SA

Do đó: \(\left(OMD\right)\cap\left(SAD\right)=xy,D\in xy\) và xy//OM//SA

27 tháng 10 2023

a: loading...

b: \(O\in AC\subset\left(SAC\right);M\in SC\subset\left(SAC\right)\)

Do đó: \(OM\subset\left(SAC\right)\)

c: Xét ΔCAS có

O,M lần lượt là trung điểm của CA,CS

=>OM là đường trung bình

=>OM//SA và OM=SA/2

OM//SA

\(SA\subset\left(SAD\right)\)

OM không nằm trong mp(SAD)

Do đó: OM//(SAD)

d: SA//MO

\(MO\subset\left(MBD\right)\)

SA không nằm trong mp(MBD)

Do đó: SA//(MBD)

e: Xét (OMD) và (SAD) có

OM//SA

\(D\in\left(OMD\right)\cap\left(SAD\right)\)

Do đó: (OMD) giao (SAD)=xy, xy đi qua D và xy//OM//SA

11 tháng 11 2023

 

a:

loading...

b: \(O\in AC\subset\left(SAC\right)\)

\(M\in SC\subset\left(SAC\right)\)

Do đó: \(OM\subset\left(SAC\right)\)

c: Xét ΔSAC có

O,M lần lượt là trung điểm của CA,CS

=>OM là đường trung bình của ΔSAC

=>OM//SA và \(OM=\dfrac{1}{2}SA\)

OM//SA

SA\(\subset\left(SAD\right)\)

OM không thuộc mp(SAD)

Do đó: OM//(SAD)

d: SA//MO

\(MO\subset\left(MBD\right)\)

SA không thuộc mp(MBD)

Do đó: SA//(MBD)

e: Xét (OMD) và (SAD) có

\(D\in\left(OMD\right)\cap\left(SAD\right)\)

OM//SA

Do đó: \(\left(OMD\right)\cap\left(SAD\right)=xy,D\in xy\) và xy//OM//SA

19 tháng 10 2023

loading...  loading...  

a: Xét ΔSAC có

O,M lần lượt là trung điểm của CA,CS

=>OM là đường trung bình của ΔSAC

=>OM//SA

SA//OM

\(OM\subset\left(MBD\right)\)

SA không thuộc mp(MBD)

Do đó: SA//(MBD)

b: Xét (OMD) và (SAD) có

\(D\in\left(OMD\right)\cap\left(SAD\right)\)

OM//SA

Do đó: (OMD) giao (SAD)=xy, xy đi qua D và xy//OM//SA

27 tháng 10 2023

a: 

loading...

b: \(O\in BD\subset\left(SBD\right);M\in SD\subset\left(SBD\right)\)

=>\(OM\subset\left(SBD\right)\)

c: Xét ΔDSB có

O,M lần lượt là trung điểm của DB,DS

=>OM là đường trung bình của ΔSDB

=>OM//SB

OM//SB

\(SB\subset\left(SBA\right)\)

OM không nằm trong mp(SBA)

Do đó: OM//(SBA)

d: OM//SB

\(SB\subset\left(SBC\right)\)

OM không nằm trong(SBC)

Do đó: OM//(SBC)

e: SB//MO

\(MO\subset\left(MAC\right)\)

SB không nằm trong mp(AMC)

Do đó: SB//(MAC)

f: Xét (OMA) và (SAB) có

\(A\in\left(OMA\right)\cap\left(SAB\right)\)

OM//SB

Do đó: (OMA) giao (SAB)=xy, xy đi qua A và xy//OM//SB

14 tháng 8

Bài giải

Gọi hệ trục Oxyz với A(0;0;0), B(a;0;0), C(a;a;0), D(0;a;0). Gọi S(p;q;h).

SA = SB = a:
p² + q² + h² = a²
(p - a)² + q² + h² = a² ⇒ p = a/2

SC = a√3:
a²/4 + (q - a)² + h² = 3a²
Từ SA: q² + h² = 3a²/4 ⇒ a²/4 + q² - 2aq + a² + h² = 3a²
2a² - 2aq = 3a² ⇒ q = -a/2 ⇒ h² = a²/2 ⇒ h = a√2/2

S(a/2; -a/2; a√2/2)
H(a/4; -a/4; a√2/4), K(3a/4; -a/4; a√2/4)
M(x; x; 0), 0 ≤ x ≤ a
N(a; t; 0) ∈ BC

HK = (a/2; 0; 0)
HM = (x - a/4; x + a/4; -a√2/4)
n = HK × HM = (0; a²√2/8; a/2(x + a/4))

Mặt phẳng (HKM): (a²√2/8)(y + a/4) + (a/2)(x + a/4)(z - a√2/4) = 0

Với N(a; t; 0): t = x ⇒ N(a; x; 0)

HK = a/2, MN = a - x
d = √[(x + a/4)² + a²/8]

S = (a/2 + a - x)/2 × d = (3a/2 - x)/2 × √[(x + a/4)² + a²/8]

Giải S'(x) = 0 ⇒ x = 5a/8

Kết luận: x = 5a/8 thì diện tích HKMN nhỏ nhất

Cho mình xin 1 tick với ạ

19 tháng 10 2023

loading...  loading...