K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2019

Chọn A.

Đề thi Học kì 2 Toán 11 có đáp án (Đề 1)

- Dựng AP ⊥ SD (P ∈ SD).

- Trong mp(SCD) dựng PN ⊥ SD (N ∈ SC)

- Khi đó mặt phẳng (P) ≡ (APN).

- Trong mặt phẳng (ABCD) dựng AK ⊥ AD (K ∈ BC).

- Mà: AK ⊥ SA ⇒ AK ⊥ SD ⇒ K ∈ (APN).

- Trong (SBC) , gọi M = NK ∩ SB. Khi đó tứ giác AMNP là thiết diện của mặt phẳng (P) với hình chóp S.ABCD suy ra tứ giác AMNP nội tiếp đường tròn.

Cách khác:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 1)

- Dựng AP ⊥ SD (P ∈ SD).

- Trong (SCD) dựng PN ⊥ SD (N ∈ SC).

- Khi đó mặt phẳng (P) ≡ (APN).

- Trong (ABCD), gọi O = AC ∩ BD.

- Trong (SAC), gọi I = AC ∩ SO.

- Trong (SBD), gọi M = PI ∩ SB.

- Khi đó mặt phẳng (P) ≡ (AMNP).

- Ta có: IA.IN = IP.IM ⇒ AMNP nội tiếp đường tròn.

31 tháng 3 2017

Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11

7 tháng 5 2019

2 tháng 2 2018

Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11

28 tháng 8 2018

5 tháng 2 2019

25 tháng 9 2017

Chọn A.

Đề thi Học kì 2 Toán 11 có đáp án (Đề 1)

- Trong (SAB), từ M kẻ đường thẳng vuông góc với SB tại Q.

- Trong (SBC) từ Q kẻ đường thẳng vuông góc với SB cắt SC tại P.

Đề thi Học kì 2 Toán 11 có đáp án (Đề 1)

- Do đó BC// QP, trong (ABC) từ M kẻ đường thẳng song song với BC cắt AC tại N.

- Xét tứ giác MNPQ, ta có BC // QP nên tứ giác là là hình thang.

- Mặt khác:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 1) 

nên tứ giác MNPQ là hình thang vuông.

1 tháng 4 2017

a) () // (ABCD) => {A_{1}{B_{1}}^{}}^{} // AB => {B_{1}}^{} là trung điểm của SB. Chứng minh tương tự với các điểm còn lại

b) Áp dụng định lí Ta-lét trong không gian:
\(\dfrac{A_1A_2}{A_2A}=\dfrac{B_1B_2}{B_2B}=\dfrac{C_1C_2}{CC_2}=\dfrac{D_1D_2}{D_2D}\).
Do \(A_1A_2=A_2A\) nên : \(\dfrac{A_1A_2}{A_2A}=\dfrac{B_1B_2}{B_2B}=\dfrac{C_1C_2}{CC_2}=\dfrac{D_1D_2}{D_2D}=1\).
Nên \(B_1B_2=B_2B;C_1C_2=CC_2=D_1D_2=D_2D\).

c) Có hai hình chóp cụt: ABCD.{A_{1}{B_{1}{C_{1}{D_{1}; ABCD.{A_{2}{B_{2}{C_{2}{D_{2}}^{}}^{}}^{}}^{}}^{}}^{}}^{}}^{}

 

7 tháng 12 2018

a) Chứng minh  B 1 ,   C 1 ,   D 1  lần lượt là trung điểm của các cạnh SB, SC, SD

Ta có:

Giải bài tập Đại số 11 | Để học tốt Toán 11

⇒ A 1 B 1  là đường trung bình của tam giác SAB.

⇒   B 1  là trung điểm của SB (đpcm)

*Chứng minh tương tự ta cũng được:

• C 1  là trung điểm của SC.

• D 1  là trung điểm của SD.

b) Chứng minh  B 1 B 2   =   B 2 B ,   C 1 C 2   =   C 2 C ,   D 1 D 2   =   D 2 D .

Giải bài tập Đại số 11 | Để học tốt Toán 11

⇒ A 2 B 2  là đường trung bình của hình thang A 1 B 1 B A

⇒   B 2  là trung điểm của B 1 B

⇒   B 1 B 2   =   B 2 B (đpcm)

*Chứng minh tương tự ta cũng được:

• C 2  là trung điểm của C 1 C 2   ⇒   C 1 C 2   =   C 2 C

• D 2  là trung điểm của D 1 D 2   ⇒   D 1 D 2   =   D 2 D .

c) Các hình chóp cụt có một đáy là tứ giác ABCD, đó là : A 1 B 1 C 1 D 1 . A B C D   v à   A 2 B 2 C 2 D 2 . A B C D