K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

NV
19 tháng 12 2020

Gọi E là giao điểm của AC và BD \(\Rightarrow\left\{{}\begin{matrix}E\in\left(SAC\right)\\E\in\left(SBD\right)\end{matrix}\right.\)

\(\Rightarrow SE=\left(SAC\right)\cap\left(SBD\right)\)

Kéo dài AD và BC cắt nhau tại F

\(\Rightarrow SF=\left(SAD\right)\cap\left(SBC\right)\)

b.

Chắc là trung điểm của SC và SD?

M và trung điểm SC, N là trung điểm SD

\(\Rightarrow MN\) là đường trung bình tam giác SCD

\(\Rightarrow MN//CD\) , mà \(CD//AB\Rightarrow MN//AB\Rightarrow MN//\left(SAB\right)\)

19 tháng 12 2020

Cảm ơn bạn

9 tháng 8 2018

7 tháng 11 2016

Đường thẳng và mặt phẳng trong không gian, Quan hệ song songĐường thẳng và mặt phẳng trong không gian, Quan hệ song songĐường thẳng và mặt phẳng trong không gian, Quan hệ song song

12 tháng 8

Mình sẽ tóm tắt và giải từng ý nhé.

Đề cho: Hình chóp S.ABCD, đáy ABCD là tứ giác.
M nằm trong tam giác SBC, N nằm trong tam giác SCD.

a) Giao tuyến của (AMN) và (ABCD)

  • A thuộc (AMN) và A cũng thuộc đáy (ABCD).
  • M thuộc (AMN) nhưng M thuộc cạnh SB nên không nằm trên đáy.
  • N thuộc (AMN) nhưng N thuộc cạnh SD cũng không nằm trên đáy.
    → Để tìm giao tuyến, ta cần 2 điểm chung. Điểm A có rồi, điểm thứ hai là giao điểm của MN với đáy (ABCD) nếu có.
    Nhưng MN nối M (SB) và N (SD), cả hai không thuộc đáy, nên để tìm điểm đó ta phải xét: SB và SD giao đáy tại B và D, nối BD cắt MN tại một điểm I. I thuộc đáy, I thuộc MN, nên I ∈ (AMN) ∩ (ABCD).
    → Giao tuyến chính là AI.

b) Giao điểm của MN với (SAC)

  • M thuộc SB, N thuộc SD, mặt phẳng (SAC) chứa S, A, C.
  • SB và SD đều nằm trong (SBD), không phải (SAC), nhưng đường MN có thể cắt (SAC) tại điểm P. Để tìm P, ta tìm giao điểm của MN với đường SC (vì SC nằm trong cả (SAC) và chứa điểm từ M→N theo hướng hợp lý).

c) Giao điểm của SC với (AMN)

  • SC nằm trong (SAC).
  • Mặt phẳng (AMN) chứa A, M, N. Để tìm giao điểm Q, ta xét SC cắt MN hoặc cắt một đường trong (AMN). Trong trường hợp này SC và MN có thể cắt nhau tại chính điểm P đã tìm ở câu b).

Tóm lại:
a) AI (I là MN ∩ BD)
b) P = MN ∩ (SAC) (thường là trên SC)
c) Cùng điểm P đó

Nếu bạn muốn mình vẽ hình minh họa để nhìn rõ hơn mình có thể làm ngay.

Cho mình xin 1 tick với ạ

13 tháng 12 2017

Do AD // BC, M thuộc (SBC) nên giao tuyến của (ADM) với (SBC) là đường thẳng qua M và song song với BC.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án B

3 tháng 11 2019