K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2019

Đáp án A

Ta có:

S A ⊥ A B C D B C ⊥ A B ⇒ B C ⊥ S A B ⇒ S B C ; A B C D ^ = S B A ^   R A B C D = A C 2 a .

Tam giác SAB vuông tại A, có

tan S B A ^ = S A A B ⇒ S A = tan 60 ∘ . a 3 = 3 a .

Bán kính đường tròn ngoại tiếp hình chữ nhật ABCD là  

Vậy bán kính mặt cầu ngoại tiếp khối chóp S.ABCD là:

R = R A B C D 2 + S A 2 4 = a 2 + 3 a 2 4 = a 13 2 ⇒ V = 4 3 π R 3 = 13 13 π a 3 6

8 tháng 4 2019

16 tháng 7 2019

Đáp án B

A C = 2 S A = 2 tan 60 0 = 2 3 V = 1 3 .2 3 .1. 3 = 2

 

21 tháng 9 2019

Đáp án A

Bán kính đường tròn ngoại tiếp hình chữ nhật ABCD là  R A B C D = A C 2 = a

Vậy bán kính mặt cầu ngoại tiếp khối chóp S.ABCD là 

13 tháng 12 2019

10 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)

\(x=0;x^2+3x+m=0\)(*)

để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0

\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)

từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)

ta tính \(y'=3x^2+6x+m\)

vì tiếp tuyến tại Dvà E vuông góc

suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)

giải pt đối chiếu với đk suy ra đc đk của m

3 tháng 10 2015

vì (C) đi qua điểm A nên tọa độ điểm A thỏa mãn pt \(y=\frac{ax^2-bx}{x-1}\) ta có \(\frac{5}{2}=\frac{a+b}{-2}\Rightarrow a+b=-5\)

vì tiếp tuyến của đồ thị tại điểm O có hệ số góc =-3 suy ra y'(O)=-3

ta có \(y'=\frac{ax^2-2ax+b}{\left(x-1\right)^2}\) ta có y'(O)=b=-3 suy ra a=-2

vậy ta tìm đc a và b

5 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)

giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau

\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)

ta đc điều phải cm

27 tháng 10 2019

.

27 tháng 12 2015

Bài nào không hiểu thì mình giải cho 

27 tháng 12 2015

dễ