Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(SA\perp\left(ABC\right)\Rightarrow AB\) là hình chiếu vuông góc của SB lên (ABC)
\(\Rightarrow\widehat{SBA}\) là góc giữa SB và (ABC)
\(AB=AC\sqrt{2}=a\sqrt{2}\)
\(tan\widehat{SBA}=\dfrac{SA}{AB}=\sqrt{\dfrac{3}{2}}\Rightarrow\widehat{SBA}\approx50^046'\)
\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AC\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAC\right)\)
\(\Rightarrow SC\) là hình chiếu vuông góc của SB lên (SAC)
\(\Rightarrow\widehat{BSC}\) là góc giữa SB và (SAC)
\(SB=\sqrt{SA^2+AB^2}=a\sqrt{5}\) ; \(BC=AC=a\)
\(sin\widehat{BSC}=\dfrac{BC}{SB}=\dfrac{1}{\sqrt{5}}\Rightarrow\widehat{BSC}\approx26^034'\)
b.
Theo cmt, \(BC\perp\left(SAC\right)\)
Mà \(BC=\left(SBC\right)\cap\left(ABC\right)\)
\(\Rightarrow\widehat{SCA}\) là góc giữa (SBC) và (ABC)
\(tan\widehat{SCA}=\dfrac{SA}{AC}=\sqrt{3}\Rightarrow\widehat{SCA}=60^0\)
Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\\SA\in\left(SAC\right)\end{matrix}\right.\) \(\Rightarrow\left(SAC\right)\perp\left(ABC\right)\)
\(\Rightarrow\) Góc giữa (SAC) và (ABC) là 90 độ

S A B C H K
\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAC\right)\)
\(\Rightarrow BC\perp AH\) (1)
Mà \(AH\perp SC\) (2)
(1);(2) \(\Rightarrow AH\perp\left(SBC\right)\)
\(\frac{SH}{SC}=\frac{SK}{SB}\Rightarrow HK//BC\) (định lý Talet đảo)
\(\Rightarrow HK\perp\left(SAC\right)\) (do \(BC\perp\left(SAC\right)\)
\(\Rightarrow HK\perp SA\)
\(HK\perp\left(SAC\right)\Rightarrow HK\perp SC\) (3)
(2);(3) \(\Rightarrow SC\perp\left(AHK\right)\Rightarrow SC\perp AK\)
\(AH\perp\left(SBC\right)\) (cmt) \(\Rightarrow\) BH là hình chiếu vuông góc của AB lên (SBC)
\(\Rightarrow\widehat{ABH}\) là góc giữa AB và (SBC)
\(\frac{1}{AH^2}=\frac{1}{SA^2}+\frac{1}{AC^2}=\frac{1}{a^2}+\frac{1}{a^2}=\frac{2}{a^2}\Rightarrow AH=\frac{a\sqrt{2}}{2}\)
\(AB=\sqrt{AC^2+BC^2}=a\sqrt{2}\)
\(\Rightarrow sin\widehat{ABH}=\frac{AH}{AB}=\frac{1}{2}\Rightarrow\widehat{ABH}=30^0\)
a: AC vuông góc SB
AC vuông góc BC
=>AC vuông (SBC)
b: BH vuông góc SC
BH vuông góc AC
=>BH vuông góc (SAC)
=>BH vuông góc SA
c: (SA;ABC)=(AS;SB)=góc ASB
\(BA=\sqrt{CB^2+CA^2}=a\sqrt{3}\)
\(SA=\sqrt{SB^2+BA^2}=a\sqrt{7}\)
sin ASB=AB/SA=căn 3/căn 7
=>góc ASB=41 độ
(SA;(SBC))=(SA;SC)=góc ASC
\(SC=\sqrt{\left(2a\right)^2+a^2}=a\sqrt{5}\)
Vì SC^2+CA^2=SA^2
nên ΔSAC vuông tại C
=>sin ASC=AC/SA=căn 2/căn 7
=>góc ASC=32 độ