Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó MN//BC hay BMNC là hthang
b, Vì N là trung điểm AC và ME(tc đối xứng) nên AECM là hbh
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tứ giác AEMF có
\(\widehat{EAF}=90^0\)(gt)
\(\widehat{AEM}=90^0\)(gt)
\(\widehat{AFM}=90^0\)(gt)
Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Xét ΔABC có
M là trung điểm của BC(gt)
MF//AB(cùng vuông góc với AC)
Do đó: F là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
Xét ΔABC có
M là trung điểm của BC(gt)
F là trung điểm của AC(cmt)
Do đó: MF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: \(MF=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà AE=MF(AFME là hình chữ nhật)
nên \(AE=\dfrac{AB}{2}\)
mà A,E,B thẳng hàng(gt)
nên E là trung điểm của AB
Ta có: F là trung điểm của NM(gt)
nên \(MN=2\cdot MF\)(1)
Ta có: E là trung điểm của AB(cmt)
nên AB=2AE(2)
Ta có: AEMF là hình chữ nhật(cmt)
nên MF=AE(Hai cạnh đối)(3)
Từ (1), (2) và (3) suy ra MN=AB
Xét tứ giác ABMN có
MN//AB(cùng vuông góc với AC)
MN=AB(cmt)
Do đó: ABMN là hình bình hành(Dấu hiệu nhận biết hình bình hành)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Ta có AN vuông góc AC; HM vuông góc AC => AN//HM (1)
Ta có AM vuông góc AB; HN vuông góc AB => AM//HN (2)
=> Tứ giác AMHN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
AH; MN là hai đường chéo của hbh nên chúng cắt nhau tại trung điểm mỗi đường
b/ Trước hết ta phải c/m A, I, K thẳng hàng
Nối AI; AK
+ Xét tam giác AHK có
Hình bình hành AMHN có ^MAN=90 => ^ANM =90 => AN vuông góc HK nà NK=NH
=> tam giác AKH cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến là tam giác cân)
=> ^KAN=^HAN (1) (trong tam giác cân đường cao đồng thời là đường phân giác)
+ Xét tam giác AIH chứng minh tương tự ta cũng có
^HAM=^IAM (2)
+ Mà ^HAN+^HAM=^BAC=90 (3)
Từ (1) (2) (3) => ^KAN+^IAM=^HAN+^HAM=90
=> ^KAN+^HAN+HAM+^IAM=180 => A,I,K thẳng hàng
+ Ở trên ta đã chứng minh được tam giác AKH và tam giác AIH là tam giác cân tại A
=> AK=AH=AI => A là trung điểm của IK
+ Xét tam giác