Cho hình bình hành ABCD M trên AB  tia DM cắt AC và CB ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8

a) Q = 3xy(x + 3y) - 2xy(x + 4y) - x²(y - 1) + y²(1 - x) + 36

= 3x²y + 9xy² - 2x²y - 8xy² - x²y + x² + y² - xy² + 36

= (3x²y - 2x²y - x²y) + (9xy² - 8xy² - xy²) + x² + y² + 36

= x² + y² + 36

b) Do x² ≥ 0 với mọi x ∈ R

y² ≥ 0 với mọi x ∈ R

Q = x² + y² + 36 ≥ 36 với mọi x ∈ R

Q nhỏ nhất khi x² + y² = 0

⇒ x = y = 0

Vậy x = y = 0 thì Q nhỏ nhất và giá trị nhỏ nhất của Q là 36

Y
13 tháng 2 2019

1. A B C D M N K E F

a) + AN // CD \(\Rightarrow\dfrac{DM}{MN}=\dfrac{MC}{MA}\)

+ AD // CK \(\Rightarrow\dfrac{MK}{MD}=\dfrac{MC}{MA}\)

\(\Rightarrow\dfrac{MD}{MN}=\dfrac{MK}{MD}\) \(\Rightarrow MD^2=MN\cdot MK\)

b) + Qua M kẻ EF // AB // CD

+ AD // CK

=> \(\dfrac{DM}{MK}=\dfrac{AM}{MC}\Rightarrow\dfrac{DM}{DM+MK}=\dfrac{AM}{AM+MC}\) (1)

\(\Rightarrow\dfrac{DM}{DK}=\dfrac{AM}{AC}=\dfrac{AE}{AD}\)

+ ME // AN

\(\Rightarrow\dfrac{DM}{DN}=\dfrac{DE}{DA}\)

=> \(\dfrac{DM}{DN}+\dfrac{DM}{DK}=\dfrac{DE}{DA}+\dfrac{AE}{AD}=1\)

\(\Rightarrow DM\left(\dfrac{1}{DN}+\dfrac{1}{DK}\right)=1\)

\(\Rightarrow\dfrac{1}{DN}+\dfrac{1}{DK}=\dfrac{1}{DM}\)

* Cm : \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

+ \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\) ( theo tính chất dãy tỉ số bằng nhau )

\(\Rightarrow\dfrac{a}{a+b}=\dfrac{c}{c+d}\) ( để giải thích cho (1) )

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

a)

\(AB\parallel CD\) nên áp dụng định lý Ta-let ta có:

\(\frac{DM}{MN}=\frac{MC}{AM}(1)\)

Kẻ \(MT\parallel AB\parallel CD\). Áp dụng định lý Ta-let:

+) Cho tam giác $KDC$: \(\frac{MK}{DK}=\frac{MT}{DC}=\frac{MT}{AB}\)

+) Cho tam giác $ACB$: \(\frac{MT}{AB}=\frac{MC}{AC}\)

\(\Rightarrow \frac{MK}{DK}=\frac{MC}{AC}\Rightarrow \frac{MK}{MK+DM}=\frac{MC}{MC+AM}\)

\(\Rightarrow \frac{MK}{DM}=\frac{MC}{AM}(2)\)

Từ \((1);(2)\Rightarrow \frac{DM}{MN}=\frac{MK}{DM}\Rightarrow DM^2=MN.MK\) (đpcm)

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

b)

Áp dụng liên hoàn định lý Ta-let cho các đoạn song song:

\(\frac{MK}{DK}=\frac{MT}{DC}=\frac{MT}{AB}\)

\(\frac{MT}{AB}=\frac{MC}{AC}\)

\(\Rightarrow \frac{MK}{DK}=\frac{MC}{AC}\Leftrightarrow 1-\frac{MK}{DK}=1-\frac{MC}{AC}\)

\(\Rightarrow \frac{DM}{DK}=\frac{AM}{AC}(1)\)

Và: \(\frac{DM}{MN}=\frac{MC}{AM}\Rightarrow \frac{DM}{DM+MN}=\frac{MC}{MC+AM}\)

\(\Rightarrow \frac{DM}{DN}=\frac{MC}{AC}(2)\)

Từ \((1);(2)\Rightarrow \frac{DM}{DK}+\frac{DM}{DN}=\frac{AM+MC}{AC}=1\)

\(\Rightarrow \frac{1}{DK}+\frac{1}{DN}=\frac{1}{DM}\)

Ta có đpcm.