Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) EFGH là hình bình hành (các cặp cạnh đối song song)
b) Tam giác CID có PJ//ID và P là trung điểm của CD.
Þ J là trung điểm của CI Þ JC = IJ
Þ AI = IJ = JC;
c) Ta có: SASCQ = 1 2 SEFGH, HE = 2 5 SASCQ.
Þ Kẻ GK ^ CQ tại K Þ SEFGH= GK.HE=GK. 2 5 SASCQ.
Þ SEFGH = 2 5 . 1 2 S A B C D ⇒ S = E F G H 1 5 S A B C D
![](https://rs.olm.vn/images/avt/0.png?1311)
a) nối A với C , B với D được:
EF // AC ( đường trung bình của tam giác BAC)
HG // AC ( " " " " " " ) suy ra EF // AC do cùng // AC
HE // DB ( đường trung bình tam giác ADB )
FG // DB ( " " " " " " ) suy ra HE // FG do cùng // với DB
Xét tứ giác EFGH có 2 cặp cạnh đối song song nên EFGH là hình bình hành
b) EFGH là hình ....
Thoi , suy ra EH = GH nên AC=BD ( do là đường trung bình của hai tam giác ADB,ADC)
vì AC = BD nên ABCD là hình thang cân
Chữ nhật, suy ra HE vuông góc với HG nên AC vuông góc với BD
Hình vuông , kết hợp 2 yếu tố của 2 hình trên được AC=BD và AC vuông góc với BD.
Tích nha☺
![](https://rs.olm.vn/images/avt/0.png?1311)
a, ta có: AB//CD=>AK//IC(1)
có:
K là trung điểm AB;I Ià trung điểm CD=>AK=KB=DI=CI(2)
Từ (1) và (2) =>AKCI là HBH=> AI//KC
b,XÉt tam giác ABI có
AK=KB;AI//KN
=>MN=NB(1)
Xét tam giác DNC có
DI=IC;IM//NC
=>DM=MN(2)
Từ (1) và (2) => DM=MN=NB
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D O E F H K I
a) Xét 2 tam giác OAF = OCE (c.g.c)
=> \(\widehat{FAO}=\widehat{OCE}\) =>AF//EC và AF=EC
=> Tứ giác AECF là hình bình hành
b) Xét 2 tam giác ACK=CAH (g.c.g)
=> AH=CK
c) OI//CK//AH
=> OI//AH, O là trung điểm AC=> HI=IC (1)
FH//OI, F là trung điểm OD
=> H là trung điểm DI
=> DI=2HI (2)
Từ (1) và (2) => DI=2CI
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét tứ giác ABEF có
BE//AF
BE=AF
BE=BA
Do đó: ABEF là hình thoi
b: Xét ΔBIE có BI=BE
nên ΔBIE cân tại B
mà góc IBE=60 độ
nên ΔBIE đều
=>góc I=60 độ
Xét tứ giác AFEI có
EF//AI
góc I=góc A
Do đó AFEI là hình thang cân
c: Xét ΔBAD có
BF là đường trung tuyến
BF=AD/2
Do đó: ΔBAD vuông tại B
=>DB vuông góc với BI
Xét tứ giác BICD có
BI//CD
BI=CD
Do đó: BICD là hình bình hành
mà DB vuông góc với BI
nên BICD là hình chữ nhật
d: Xét ΔAED có
EF la trung tuyến
FE=DA/2
Do đó: ΔAED vuông tại E
=>góc AED=90 độ