Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
ABCD là hình bình hành ⇒ AB = CD.
M là trung điểm AB ⇒ AM = MB = AB/2.
N là trung điểm CD ⇒ CN = DN = CD/2.
⇒ AM = MB = CN = DN.
+ Tứ giác BMDN có: BM // DN và BM = DN
⇒ BMDN là hình bình hành
⇒ DM // BN hay ME // NK
+ Tứ giác AMCN có: AM // NC, AM = NC
⇒ AMCN là hình bình hành
⇒ AN // CM hay EN // MK.
+ Tứ giác MENK có: ME // NK và NE // MK
⇒ MENK là hình bình hành.
a) MENK là hình thoi
⇔ MN ⊥ EK.
⇔ CD ⊥ AD (Vì EK // CD và MN // AD)
⇔ ABCD là hình chữ nhật.
b) MENK là hình chữ nhật
⇔ MN = EK
Mà MN = BC; (vì tam giác MCD có E và K lần lượt là trung điểm MD, MC nên EK là đường trung bình của tam giác MCD).
⇔ CD = 2.BC.
c) MENK là hình vuông
⇔ MENK là hình thoi và đồng thời là hình chữ nhật
⇔ ABCD là hình chữ nhật và có CD = 2.BC.
![](https://rs.olm.vn/images/avt/0.png?1311)
1: Xét tứ giác AMND có
AM//ND
AM=ND
Do đó: AMND là hình bình hành
Suy ra: Hai đường chéo AN cắt MD tại trung điểm của mỗi đường
=>K là trung điểm chung của AN và MD
Xét tứ giác MBCN có
MB//CN
MB=CN
Do đó: MBCN là hình bình hành
Suy ra: Hai đường chéo MC và BN cắt nhau tại trung điểm của mỗi đường
=>L là trung điểm chung của BN và CM
2: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
Suy ra: Hai đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường(1)
Xét tứ giác MKNL có
MK//NL
ML//NK
Do đó: MKNL là hình bình hành
Suy ra: Hai đường chéo MN và KL cắt nhau tại trung điểm của mỗi đường(2)
Ta có: ABCD là hình bình hành
nên Hai đườg chéo AC và BD cắt nhau tại trung điểm của mỗi đường(3)
Từ (1), (2) và (3) suy ra AC,BD,MN,KL đồng quy
![](https://rs.olm.vn/images/avt/0.png?1311)
Tự vẽ hình nha
a) Vì M là trung điểm AB, N là trung điểm CD
=> MN là đường trung bình
=> MN // AD // BC
và MN = ( AD + BC ) : 2 = AD = BC ( vì ABCD là hình thoi nên AD = BC )
Xét tứ giác AMND có MN // AD và MN = AD
=> AMND là hình bình hành ( đpcm )
b) Vì MN // BC và MN = BC
=> BMNC là hình bình hành
=> hai đường chéo BN và CM cắt nhau tại L là trung điểm mỗi đường ( đpcm )
c) Xét tam giác DAM và tam giác BCN có
AD = BC
góc DAM = góc BCN ( trong hình thoi và hình bình hành, hai góc đối bằng nhau )
AM = CN = ( AB/2 = DC/2 do AB = DC )
=> tam giác DMA = tam giác BNC ( c-g-c )
=> góc AMD = góc BNC ( c g t ư )
Có AB // DC
=> góc AMD = góc MDN ( cặp góc so le trong )
mà góc AMD = góc BNC
=> góc BNC = góc MDN
mà hai góc này đồng vị
=> MD // BN
mà MB // DN ( AB // CD )
=> MBND là hình bình hành
=> BD cắt MN tại trung điểm O của MN
Chứng minh tương tự với hình AMCN
=> AC cắt MN tại trung điểm O của MN
Vì M là trung điểm AB, L là trung điểm BN
=> ML là đường trung bình trong tam giác BAN
=> ML // AN
và ML = 1/2 AN = AK ( AMND là hình bình hành, K là giao hai đường chéo nên K là trung điểm AN )
Xét tứ giác MLNK có ML // KN, ML = KN
=> MLKN là hình bình hành
=> MN giao KL tại trung điểm O của MN
Vì bốn đường thẳng AC, BD, MN , KL cùng đi qua O
=> chúng đồng quy ( đpcm )