Cho hình bình hành ABCD, đường phân giác của B A...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2018

a)xét tứ giác ADME có

CÂB =AÊM=góc ADM=900

=>ADME là hcn

b)vì MA là đg trung tuyến nên MA=MC=MB

xét tam giác CMA có

CM=MA(cmt)

CÊM=AÊM=900

EM là cạnh chung

=>...(cạnh huyền-cạnh góc vuông)

=>CE=EA

mà EA=MD(EAMD là hcn) nên CE=MD (1)

ta có MA=MC(cmt)

mà MA=ED(EAMD là hcn)

=>MC=ED (2)

xét tứ giác CMDE có CE=MD,CM=ED( 1 và 2)

=>CMED là hbh

c)

xét tam giác MDB vuông tại D có DI là trung tuyến nên MI=IB=ID

xét tứ giác MKDI có

KM=KD(K là giao điểm hai dg chéo của hcn)

KM=MI(vì MA=MB mà K và I lần lượt là trung điểm của chúng)

MI=ID(cmt)

=>KMID là thoi

mà KI là đg chéo của góc I nên KI cũng là p/g của góc I

(ck hk tốt nhé)

13 tháng 12 2017

Hình bạn tự vẽ nha!

a,  ta có:

Góc A=Góc D=90°(gt)<=>AD_|_DC

BH_|_DC

=>BH//AD

ABCD là hình thang nên AB//CD

=>Tứ giác ABHD là hình chữ nhật.

b,Do ABHD  là hình chữ nhật, nên:

AB=HD=3cm

CD=6cm=>HC=6-3=3 cm

Do BH_|_CD(gt)=>góc BHC=90°

=>tam giác BHC vuông tại H

Xét tam giác vuông BHC:

Theo định lý pitago trong tam giác vuông thì:

BC^2=HC^2+BH^2

=>BH^2=BC^2-HC^2=(5)^2-(3)^2=16

=>BH=4 cm

=>Diện tích hình chữ nhật ABHD là:

3.4=12 cm2

c,Do M là M là trung điểm của BC nên:

MB=MC=BC/2=5/2=2,5cm

Do N đối xứng với M qua E (gt)nên:

EM=EN

Đường chéo AH^2=AD^2+DH^2=25cm

=>AH=5cm=>EH=5/2=2,5cm

=>Tứ giác ABCHH=NMCD vì MC=ND=BC/2=2,5 cm

EM+EN=2AB=6 cm

AB//HC=3cm;BC//AH=5cm

=>NM//DC=6cm

==> Tứ giác NMCD  là hình bình hành

d,bạn tự chứng minh (khoai quá)

10 tháng 1 2018

d) gọi O là trung điểm của FB

nối O vs N

=> ON là đường trung bình của tam giác FBD và tam g BFC

=> ON // FC , ON // BD ( T/C đường trung bình )

=> FC // BD

tứ giác FBDC có FB // CD (vì AB // CD )

FC // BD (cmt)

=> FBDC là HBH (vì là tứ giác có các cạnh đối //)

=> FD giao BC tại trung điểm mỗi đường (t/c HBH)

mà N là trung điểm BC => N là trung điểm FD

=> N,F,D thẳng hàng

10 tháng 1 2018

a. Do ABCD là hình bình hành nên

• AB=CD

• AD=BC=> 1/2AD=1/2BC=> MD=NC • AD//BC

=> MD//NC

=> MNCD là hình bình hành

Ta có AD=2AB=> AD=2CD

=> CD=1/2AD=MD

Xét hbh MNCD: MD=CD

=> MNCD là hình thoi b.

Do MNCD là hình thoi => MN//CD Mà AB//CD

=> MN//AB Mà F thuộc AB, E thuộc MN

=> BF//NE Xét tam giác BFC có BN=NC, NE//BF

=> FE=EC => E là trung điểm FC