Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tam giác ADB có : M là trung điểm của AB(gt)
N là trung điểm của AD(gt)
=> MN là đường trung bình của tam giác ADB ( đ/n)
=> MN//DB và MN =1/2 DB ( t/c)
Xét tam giác AMN và tam giác ABD có : MN // BD ( cmt)
tam giác AMN đồng dạng với tam giác ABD ( hq đ/y ta lét) => SAMN/SABD=(1/2)^2=1/4 (1)
Xét tam giác ABD và tam giác CDBcó
AB=CD( ABCD là hbh )
góc A = góc C (nt)
AD=cb(nt)
=> tam giác ABD = tam giác CDB (cgc)
=> tam giác ABD đồng dạng tam giác CDB(t/c)
=> tam giác ABD=1/2 HBh ABCD(2)
Từ 1 2 => SAMN/SABCD=1/8
Vẽ AH⊥BC⊥BC cắt MN tại H'
Ta có : AH'=HH'=12AH12AH(vì MN là trung điểm => AH′=12AHAH′=12AH)
Lại có:
SABC=12.AH.BC=60cm2SABC=12.AH.BC=60cm2 và SAMN=12AH′.MNSAMN=12AH′.MN.Mà
MN là đường trung bình của tam giác ABC=>MN=12BCMN=12BC
=>SAMN=12.12AH.12BC=14(12AH.BC)=12.60=15(cm2)SAMN=12.12AH.12BC=14(12AH.BC)=12.60=15(cm2)
Vậy SAMN=15cm2

Dưới đây là lời giải siêu gọn, đúng trọng tâm cho từng ý:
Cho: Hình bình hành \(A B C D\),
\(K , I\) là trung điểm của \(A B , C D\);
\(M , N\) là giao điểm của \(A I , C K\) với đường chéo \(B D\).
a) \(A K C I\) là hình bình hành
Vì \(K , I\) là trung điểm \(A B , C D\) ⇒ \(K I \parallel A C\), \(K I = \frac{1}{2} A C\)
Tương tự \(A C \parallel K I\), hai cặp cạnh đối song song ⇒
✅ \(A K C I\) là hình bình hành.
b) \(\angle M A C = \angle N C A\) và \(I M \parallel C N\)
- \(A K C I\) là hình bình hành ⇒ \(A I \parallel C K\)
⇒ \(I M \parallel C N\) (do cùng cắt \(B D\)) - Tam giác \(M A C\) và \(N C A\) có chung \(A C\), hai góc bằng nhau ⇒
✅ \(\angle M A C = \angle N C A\)
c) \(D M = M N = N B\)
- Do \(A I , C K\) cắt nhau tại trung điểm đường chéo trong hình bình hành, chia \(B D\) thành 3 đoạn bằng nhau
⇒ ✅ \(D M = M N = N B\)
d) \(A C , B D , I K\) đồng quy
- \(I K\) nối trung điểm \(A B , C D\) ⇒ là đường trung bình
- Đường chéo \(A C\) cắt \(I K\) tại 1 điểm
- \(B D\) cũng cắt tại điểm đó (do đối xứng trung điểm)
⇒ ✅ \(A C , B D , I K\) đồng quy
Xong! Gọn – đủ – đúng 😎
Cần vẽ hình không?
a: Ta có: \(AK=KB=\frac{AB}{2}\)
\(DI=IC=\frac{DC}{2}\)
mà AB=DC
nên AK=KB=DI=IC
Xét tứ giác AKCI có
AK//CI
AK=CI
Do đó: AKCI là hình bình hành
b: Ta có: AKCI là hình bình hành
=>AI//CK
=>\(\hat{IAC}=\hat{KCA}\)
=>\(\hat{MAC}=\hat{NCA}\)
AI//CK
=>IM//CN
c: Xét ΔDNC có
I là trung điểm của DC
IM//NC
Do đó: M là trung điểm của DN
=>DM=MN
Xét ΔABM có
K là trung điểm của BA
KN//AM
Do đó: N là trung điểm của BM
=>BN=NM
=>BN=NM=DM
d: Ta có: AKCI là hình bình hành
=>AC cắt KI tại trung điểm của mỗi đường(1)
ta có: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1),(2) suy ra AC,KI,BD đồng quy

Dễ thấy SABCD = 2SADC (1)
Gọi O là giao điểm của AC và BD thì O là trung điểm của AC.
Tam giác ADC và tam giác CMD có chung đường cao kẻ từ C nên cho ta :\(\frac{S_{ADC}}{S_{CMD}}=\frac{AD}{MD}=2\)hay SADC = 2SCMD (2)
Tương tự : \(\frac{S_{CMD}}{S_{DME}}=\frac{CM}{ME}=3\)( vì E là trọng tâm của tam giác ADC ) hay SCMD = 3SDME (3)
Từ (1) (2) (3) suy ra SABCD = 12SDME = 12 m2

a,Hình bình hành ABCD có AB=CD
⇒12AB=AM=12CD=CN⇒12AB=AM=12CD=CN
Mặt khác, M,N lần lượt là trung điểm của AB và CD
Do đó, AM//CN
Tứ giác AMCN có cặp cạnh đối vừa song song vừa bằng nhau nên là hình bình hành (đpcm)
b, Tứ giác AMCN là hình bình hành
⇒⇒M1ˆ=N1ˆM1^=N1^ (Hai góc đối của hình bình hành AMCN)
⇒⇒M2ˆ=N2ˆM2^=N2^ (Do M1ˆM1^ và M2ˆM2^ là hai góc kề bù; N1ˆN1^ và N2ˆN2^ là hai góc kề bù)
Mặt khác, ABCD là hình bình hành nên AB//CD ⇒⇒B1ˆ=D1ˆB1^=D1^
ΔEDNΔEDN và ΔKBMΔKBM có:
M2ˆ=N2ˆM2^=N2^
DN=BMDN=BM
B1ˆ=D1ˆB1^=D1^
⇒ΔEDN=ΔKBM(g.c.g)⇒ΔEDN=ΔKBM(g.c.g)
⇒ED=KB⇒ED=KB (đpcm)
c, Gọi O là giao điểm của AC và BD.
ABCD là hình bình hành
⇒OA=OC⇒OA=OC
ΔCABΔCAB có:
MA=MBMA=MB
OA=OCOA=OC
MC cắt OB tại K
⇒⇒ K là trọng tâm của ΔCABΔCAB
Mặt khác, I là trung điểm của BC
⇒⇒ IA,OB,MC đồng quy tại K
Hay AK đi qua trung điểm I của BC (đpcm)
Samn =1/2*1/2 Sabcd
Samn =1/4 Sabcd
me mik là cung cự giải nè làm bn nha!