Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
bài này ko khó nếu nắm rõ công thức
A)Ta có AD=DC ( giả thiết )
mà AD=BH ( cùng là chiều cao của hình thang)
=>BH=DC
=>Tam giác Dkc=Tam giác HCB (cạnh huyền cạnh góc vuông)
=>góc DKC=góc HCB (hai góc tương ứng )
mà Góc DKC+ góc DCK = 90 độ
=>góc HCB+ góc DCk=90
=>góc BCK=90 độ=> BC vuông góc với Ck
B )Tam giác ECK vuông tại C ( do câu a)
=>1/CD^2=1/EC^2+1/Ck^2
mà
Tam giác Dkc=Tam giác HCB (cạnh huyền cạnh góc vuông)
=> CK=CB
=>
1/CD^2=1/EC^2+1/CB^2
![](https://rs.olm.vn/images/avt/0.png?1311)
Kẻ\(AK\perp AM\left(K\in OC\right)\)
\(AH\perp DC\left(H\in DC\right)\)
Áp dụng hệ thức giữa cạnh và đường cao và tam giác vuông AKN , đường cao AH , ta có
\(\dfrac{1}{AK^2}+\dfrac{1}{AN^2}=\dfrac{1}{AH^2}\left(1\right)\)
Xét \(\Delta AMB\)và\(\Delta ADK\)có:
\(\left\{{}\begin{matrix}AD=AB\\\widehat{B}=\widehat{D}\\\widehat{DAK}=\widehat{MAB}\end{matrix}\right.\)
=> \(\Delta AMB=\Delta AKD\)
=> AM=AK ( 2 cạnh tương ứng)(2)
Áp dụng định lý py-ta-go , ta có :
\(HD^2+AH^2=AD^2\)
=>\(AH^2=AD^2-HD^2\)(3)
\(\Delta ADH\perp H\)có :\(\widehat{ADH}+\widehat{DAH}=90^o\)
=> \(\widehat{ADH}=90^o-60^o\)(Vì ABCD là h.thoi có góc DAB=120 độ => góc DAH=60 độ)
=>\(\widehat{ADH}=30^o\)
=>\(DH=\dfrac{1}{2}AD\)(4)
Thay (4) vào (3) , ta có : \(AH^2=AD^2-\left(\dfrac{1}{2}.AD\right)^2\)
=\(\dfrac{3}{4}.AD^2\)
=\(\dfrac{3}{4}.AB^2\)(vì AB=AD)
Thay (2) vào (5) , ta có :
\(\dfrac{1}{AM^2}+\dfrac{1}{AN^2}=\dfrac{4}{3AB^2}\)
<=> \(\dfrac{3}{AM^2}+\dfrac{3}{AN^2}=\dfrac{4}{AB^2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn tự hình nha
đẳng thức cần chứng minh tương đương
\(1=\dfrac{AB^2}{AM^2}+\dfrac{AB^2}{AN^2}\left(@\right)\)
vậy để c/m bài toán ta cần c/m (@) ta có
\(\dfrac{AB}{AM}=\dfrac{CN}{MN}\left(thales\right)\Rightarrow\dfrac{AB^2}{AM^2}=\dfrac{CN^2}{MN^2}\left(1\right)\)
và AB=AD nên
\(\dfrac{AB}{AN}=\dfrac{AD}{AN}=\dfrac{CM}{MN}\left(thales\right)\Rightarrow\dfrac{AB^2}{AN^2}=\dfrac{CM^2}{MN^2}\left(2\right)\)
áp dụng định lí pythagore cho tam giác MCN vg tại C
\(CM^2+CN^2=MN^2\)
cộng 2 vế của (1) và (2) ta có
\(\dfrac{AB^2}{AM^2}+\dfrac{AB^2}{AN^2}=\dfrac{CN^2}{MN^2}+\dfrac{CM^2}{MN^2}=\dfrac{CM^2+CN^2}{MN^2}=\dfrac{MN^2}{MN^2}=1\left(\left(@\right)lđ\right)\)
vậy bài toán đc c/m
nếu có j thắc mắc ib mình giải thích cho