Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Vẽ đồ thị
b) Gọi yA, yB, yC lần lượt là tung độ các điểm A, B, C có cùng hoành độ x = -1,5. Ta có:
yA = . (-1,5)2 =
. 2,25 = 1,125
yB = (-1,5)2 = 2,25
yC = 2 (-1,5)2 = 2 . 2,25 = 4,5
c) Gọi yA, yB, yC’ lần lượt là tung độ các điểm A', B', C' có cùng hoành độ x = 1,5. Ta có:
yA, = . 1,52 =
. 2,25 = 1,125
yB, = 1,52 = 2,25
yC’ = 2 . 1,52 = 2 . 2,25 = 4,5
Kiểm tra tính đối xứng: A và A', B và B', C và C' đối xứng với nhau qua trục tung Oy.
d) Với mỗi hàm số đã cho ta đều có hệ số a > 0 nên O là điểm thấp nhất của đồ thị. Khi đó ta có x = 0.
Vậy x = 0 thì hàm số có giả trị nhỏ nhất.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (P) là parabol đi qua gốc toạ độ O(0; 0) ; điểm (1; 1/2) và điểm (-1;1/2)
b) A \(\in\) (P) => yA = \(\frac{1}{2}\). xA2 = \(\frac{1}{2}\). (-1)2 = \(\frac{1}{2}\)=> A (-1; \(\frac{1}{2}\))
B \(\in\) (P) => yB = \(\frac{1}{2}\).xB2 = \(\frac{1}{2}\).4 = 2 => B (2; 2)
+) đường thẳng có hệ số góc bằng \(\frac{1}{2}\) có dạng y = \(\frac{1}{2}\)x + b (d)
A \(\in\) d => yA = \(\frac{1}{2}\).xA + b => \(\frac{1}{2}\) = \(\frac{1}{2}\). (-1) + b => b = 1
Vậy đường thẳng (d) có dạng y = \(\frac{1}{2}\)x + 1
Nhận xét: yB = \(\frac{1}{2}\).xB + 1 => B \(\in\) (d)
![](https://rs.olm.vn/images/avt/0.png?1311)
Nếu quá dài ko trả lời hết thì các p cki cần làm nhanh giúp mk câu : 1.8 ; 2.2 đến 2.5 và 3.2 đến 3.7 thôi cũng dk . mk thật lòng biết ơn .
Câu 1.1:
Nghiệm lớn nhất của phương trình x4 - 29x2 + 100 = 0 là x = ...........phương trình này vô nghiệm nhé
Câu 1.3:
Một hình trụ có diện tích xung quanh là 80π cm2 và thể tích là 160π cm2.
Bán kính đáy của hình trụ này là R = .......4.... cm.
Câu 1.4:
Khi phương trình x2 - 3x + m = 0 có một nghiệm là x = 1,25 thì nghiệm còn lại của phương trình là x = ........1,75.......
Câu 1.8:
Hai tổ cùng làm chung một công việc trong 12 giờ thì xong. Nhưng hai tổ cùng làm trong 4 giờ thì tổ 1 đi làm việc khác, tổ 2 làm nốt trong 10 giờ mới xong việc. Nếu làm riêng thì tổ 2 mất .....60.. giờ sẽ xong việc.
Câu 1.9
Nghiệm nguyên của phương trình: x4 + 5x3 - 12x2 + 5x + 1 = 0 là x = .....1.......
Câu 1.10:
Nghiệm âm của phương trình (x2 + 3x + 2)(x2 + 7x + 12) = 120 là x = ...1.......
Bài 2: Đi tìm kho báu
Câu 2.2:
Nghiệm nguyên của phương trình: 2x4 - 3x3 - 7x2 + 12x = 4 là .....1......
Câu 2.3:
Cho tam giác ABC vuông cân tại A. Trên nửa mặt phẳng bờ BC không chứa điểm A vẽ tam giác cân BCD có góc CBD = 90o. Biết độ dài cạnh AC = 3√5cm.
Độ dài đoạn AD = .....Căn 6...... cm.
Câu 2.4:
Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): y = mx + m - 1.
Giá trị m nguyên để (d) tạo với 2 trục tọa độ tam giác có diện tích 2 (đvdt) là ....1.......
Câu 2.5:
Cho a, b, c > 0 thỏa mãn a + b + c = 1.
Giá trị nhỏ nhất của biểu thức A = bc/a + ca/b + ab/c bằng ......3.....
Bài 3: Đỉnh núi trí tuệ
Câu 3.1:
Cho đường tròn (O; 13cm). Biết khoảng cách từ tâm O đến dây PQ bằng 5cm.
Độ dài dây PQ = .....24......cm.
Câu 3.2:
Cho hàm số y = 1/2 .x2 có đồ thi là (P).
Trên (P) lấy hai điểm A, B có hoành độ lần lượt là -1; 2.
Phương trình đường thẳng AB có tung độ gốc là .......2.....
Câu 3.3:
Phương trình x2 - 2(m + 2)x + 2m - 1 = 0 có hai nghiệm là độ dài hai cạnh góc vuông của một tam giác vuông có cạnh huyền bằng √34.
Khi đó m = ...Chịu........
Câu 3.4:
Một đa giác có số đường chéo nhiều hơn số cạnh là 12. Số cạnh của đa giác là ...8.......
Câu 3.5:
Cho parabol (P): y = ax2 và đường thẳng (d) có hệ số góc bằng 2. Biết (d) và (P) có một điểm chung duy nhất là A có hoành độ bằng 2. Khi đó tung độ của điểm A là ...Chịu.........
Câu 3.6:
Cho phương trình x2 - 5x - 1 = 0 có các nghiệm x1, x2. Biểu thức B = (x13 - 5x12 + 2)(x23 - 5x22 + 2) có giá trị là ......Chịu.....
Câu 3.7:
Cho a, b > 0 và 3a + 5b = 12.
Giá trị lớn nhất của biểu thức P = ab là ...Chịu nốt........
Nhập kết quả dưới dạng phân số tối giản.
a. Vẽ được rồi nên thôi
Hai điểm A(-2, 2) và B(1, 1/2)
b. Đường thẳng AB có PT: x + 2y - 2 = 0.
c. Diện tích tam giác ABC = \(\frac{1}{2}\)AB x d(C/AB)
AB cố định. => Diện tích tam giác ABC lớn nhất khi d(C/AB) lớn nhất
Điểm C có tọa độ (x; \(\frac{x^2}{2}\))
d(C/AB) = \(\frac{\left|x+2\frac{x^2}{2}-2\right|}{\sqrt{1^2+2^2}}\)
d(C/AB) đạt max khi \(\left|x+x^2-2\right|\) đạt max (vì C thuộc cung AB nên -2 < x < 1)
Ta có x2 + x - 2 = (x + 2)(x - 1)
với -2 < x < 1 => x2 + x - 2 < 0
=> \(\left|x^2+x-2\right|\)= -x2 - x + 2 (khi 2- < x < 1)
Vậy, d(C/AB) đạt max khi -x2 - x + 2 đạt max (khi 2- < x < 1)
-x2 -x + 2 = -(x + \(\frac{1}{2}\))2 + \(\frac{1}{4}\) + 2
= -(x +\(\frac{1}{2}\))2 + 9/4 >= 9/4
Vậy, d(C/AB) đạt max khi x = -\(\frac{1}{2}\)
Thay x = \(-\frac{1}{2}\)vào (P): y = \(\frac{x^2}{2}\)
Vậy, Điểm C: (\(-\frac{1}{2}\); \(\frac{1}{8}\))